Широтно-импульсная модуляция (ШИМ). Широтно-импульсный модулятор, принцип работы и схема Регулятор напряжения шим схема

Регулировка оборотов электродвигателей в современной электронной технике достигается не изменением питающего напряжения, как это делалось раньше, а подачей на электромотор импульсов тока, разной длительности. Для этих целей и служат, ставшие в последнее время очень популярными - ШИМ (широтно-импульсно модулируемые ) регуляторы. Схема универсальная - она же и регулятор оборотов мотора, и яркости ламп, и силы тока в зарядном устройстве.

Схема ШИМ регулятора

Указанная схема отлично работает, прилагается.

Без переделки схемы напряжение можно поднимать до 16 вольт. Транзистор ставить в зависимости от мощности нагрузки.

Можно собрать ШИМ регулятор и по такой электрической схеме, с обычным биполярным транзистором:

А при необходимости, вместо составного транзистора КТ827 поставить полевой IRFZ44N, с резистором R1 - 47к. Полевик без радиатора, при нагрузке до 7 ампер, не греется.

Работа ШИМ регулятора

Таймер на микросхеме NE555 следит за напряжением на конденсаторе С1, которое снимает с вывода THR. Как только оно достигнет максимума - открывается внутренний транзистор. Который замыкает вывод DIS на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю - система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.

Заряд конденсатора С1 идет по пути: «R2->верхнее плечо R1 ->D2«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS. Когда вращаем переменный резистор R1, у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе. Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1. Меняя отношение сопротивлений заряда/разряда - меняем скважность. Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Диоды можно ставить любые, конденсаторы примерно такого номинала, как на схеме. Отклонения в пределах одного порядка не влияют существенно на работу устройства. На 4.7 нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно.

Если после сборки схемы греется ключевой управляющий транзистор, то скорее всего он полностью не открывается. То есть на транзисторе большое падение напряжения (он частично открыт) и через него течет ток. В результате рассеивается большая мощность, на нагрев. Желательно схему параллелить по выходу конденсаторами большой емкости, иначе будет петь и плохо регулировать. Чтобы не свистел - подбирайте С1, свист часто идет от него. В общем область применения очень широкая, особенно перспективным будет её использование в качестве регулятора яркости мощных светодиодных ламп, LED лент и прожекторов, но про это в следующий раз. Статья написана при поддержке ear, ur5rnp, stalker68.

ШИМ регулятор оборотов двигателя постоянного тока проще всего организовать с помощью ШИМ регулятора. ШИМ — это широтно-импульсная модуляция, в английском языке это называется PWM - Pulse Width Modulation. Теорию я подробно объяснять не буду, информации полно в интернете.

Своими словами — если у нас есть двигатель постоянного тока на 12 вольт — то мы можем регулировать обороты двигателя изменяя напряжение питания. Изменяя напряжение питания от нуля до 12 вольт будут изменятся обороты двигателя от нуля до максимальных. В случае с ШИМ регулятором мы будем изменять скважность импульсов от 0 до 100% и это будет эквивалентно изменению напряжения питания двигателя и соответственно будут изменятся обороты двигателя.

Рассмотрим первый ШИМ регулятор на 5 ампер. Есть такая самая любимая микросхема всех радиолюбителей — это таймер NE555 (или советский аналог КР1006ВИ). Вот на этой микросхеме и собран ШИМ регулятор. Кроме таймера здесь я использую стабилизатор на 9 вольт LM7809, мощный полевой транзистор с N-каналом IRF540, сдвоенный диод Шоттки, а также другие мелкие детали. Схема по которой собран этот регулятор всем известна и очень популярна.

В более мощном исполнении я применяю просто параллельное включение нескольких полевых транзисторов IRF540 и более мощный сдвоенный диод Шоттки. В остальном всё аналогично.

Подключение ШИМ регулятора очень простое. Вы видите 4 клеммы — две клеммы для подачи питания (+) и (-), и две клеммы для подключения мотора (M+) и (M-).

Сделал еще ШИМ регулятор с защитой по току. Для этих целей использовал распространенный операционный усилитель LM358 и два оптрона PC817. При превышении тока, который мы задаем подстроечником R12, срабатывает триггер-защелка на операционнике DA3.1, оптронах DA4 и DA5 и блокируется генерация импульсов по 5 ноге таймера NE555. Чтобы снова запустить генерацию нужно кратковременно снять питание со схемы с помощью кнопки S1.

С аналоговым интегральным таймером SE555/NE555 (КР1006), выпускаемым компанией Signetics Corporation с далекого 1971 года прекрасно знакомо большинство советских и зарубежных радиолюбителей. Трудно перечислить, для каких только целей не использовалась эта недорогая, но многофункциональная микросхема за почти полувековой период своего существования. Однако, даже несмотря на быстрое развитие электронной промышленности в последние годы, она по-прежнему продолжает пользоваться популярностью и выпускается в значительных объемах.
Предлагаемая Jericho Uno простенькая схемка автомобильного ШИМ-регулятора – не профессиональная, полностью отлаженная разработка, отличающаяся своей безопасностью и надежностью. Это всего лишь небольшой дешевый эксперимент, собранный на доступных бюджетных деталях и вполне удовлетворяющий минимальным требованиям. Поэтому его разработчик не берет на себя ответственности за все то, что может произойти с вашим оборудованием при эксплуатации смоделированной схемы.

Схема ШИМ регулятор на NE555

Для создания ШИМ-устройства вам понадобится:
  • электропаяльник;
  • микросхема NE555;
  • переменный резистор на 100 кОм;
  • резисторы на 47 Ом и 1 кОм по 0,5W;
  • конденсатор на 0,1 мкФ;
  • два диода 1N4148 (КД522Б).

Пошаговая сборка аналоговой схемы

Построение цепи начинаем с установки перемычек на микросхему. Используя паяльник, замыкаем между собой следующие контакты таймера: 2 и 6, 4 и 8.


Дальше, руководствуясь направлением движения электронов, распаиваем на переменном резисторе «плечи» диодного моста (проход тока в одну сторону). Номиналы диодов подобраны из имеющихся в наличие, недорогих. Можно заменить их любыми другими – это практически не повлияет на работу схемы.


Во избежание короткого замыкания и перегорания микросхемы при выкручивании переменного резистора в крайнее положение, ставим по питанию шунтирующее сопротивление в 1 кОм (контакты 7-8).


Поскольку NE555 выступает в роли генератора пилы, для получения схемы с заданной частотой, длительностью импульса и паузой, осталось подобрать резистор и конденсатор. Неслышных 18 кГц нам даст конденсатор 4,7 нФ, но такое малое значение емкости вызовет перекос плеч при работе микросхемы. Ставим оптимальную в 0,1 мкФ (контакты 1-2).


Избежать противного «пищания» схемы и подтянуть выход к высокому уровню можно чем-то низкоомным, например резистором 47-51 Ом.


Осталось подключить питание и нагрузку. Схема рассчитана на входное напряжение бортовой сети автомобиля 12V постоянного тока, но для наглядной демонстрации вполне запустится и от 9V батареи. Подключаем ее на вход микросхемы, соблюдая полярность (плюс на 8 ножку, минус на 1 ножку).


Осталось разобраться с нагрузкой. Как видно из графика, при понижении переменным резистором выходного напряжения до 6V пила на выходе (ножки 1-3) сохранилась, то есть NE555 в данной схеме и генератор пилы и компаратор одновременно. Ваш таймер работает в а-стабильном режиме и имеет коэффициент заполнения меньше 50%.


Модуль выдерживает 6-9 А проходного постоянного тока, так что при минимальных потерях можно подключить к нему как светодиодную полосу в автомобиле, так и маломощный двигатель, который и дым развеет и лицо в жару обдует. Примерно так:



Или так:


Принцип работы ШИМ регулятора

Работа ШИМ регулятора достаточно проста. Таймер NE555 отслеживает напряжение на емкости С. При ее заряде до достижения максимума (полный заряд) происходит открывание внутреннего транзистора и появлению логического нуля на выходе. Далее емкость разряжается, что приводит к закрытию транзистора и приходу к выходу логической единицы. При полном разряде емкости происходит переключение системы и все повторяется. В момент заряда ток идет по одному плечу, а при разряде – по-другому. Переменным резистором мы меняем соотношение сопротивления плеч, автоматически понижая либо увеличивая напряжение на выходе. В схеме наблюдается частичное отклонение частоты, но в слышимый диапазон она не попадает.

Смотирте видео работы ШИМ регулятора

Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана .

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

  • обеспечивает режим плавного пуска преобразователя;
  • ограничивает амплитуду и скважность управляющих импульсов;
  • контролирует уровень входного напряжения;
  • защищает от короткого замыкания и превышения температуры силового ключа;
  • при необходимости переводит устройство в дежурный режим.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в . Он построен на базе микросхемы и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

Читайте так же

Широтно-импульсная модуляция (ШИМ, английская аббревиатураPWM - Pulse-Width Modulation) - это способ кодирования аналогового сигнала путем изменения ширины (длительности) прямоугольных импульсов несущей частоты. На рис.1 представлены типичные графики ШИМ-сигнала.

Так как при ШИМ частота импульсов, а значит, и период (Т) остаются неизменными, то при уменьшении ширины импульса (t) увеличивается пауза между импульсами (рис.16) и наоборот, при расширении импульса пауза сужается (рис.1в).

Если ШИМ-сигнал пропустить через фильтр низших частот (ФНЧ), то уровень постоянного напряжения на выходе фильтра будет определяться скважностью импульсов ШИМ. Скважность Q - это отношение периода импульсов Т к их длительности t, т.е. Формула:

Величина, обратная скважности, которая также встречается в литературе, называется “коэффициентом заполнения” (К3). Назначение ФНЧ - не пропускать на выход несущую частоту ШИМ.

Сам фильтр может состоять из простейшей интегрирующей RC-цепочки или же отсутствовать вовсе, например, если нагрузка имеет достаточную инерцию.

Рис. 1. Графики работы ШИМ.

Таким образом, с помощью двух логических уровней “1 ” и “0” можно получить любое промежуточное значение аналогового сигнала. Широтно-импульсная модуляция широко используется в современной электронике, например, в импульсных источниках питания или в устройствах цифровой обработки звуковых сигналов. В описан широтно-импульсный модулятор на одной КМОП-микросхеме.

Он выполнен на основе двух логических элементов (рис.2) микросхемы К176ЛП1 (рис.За), которая называется универсальным логическим элементом (зарубежный аналог - CD4007).

Универсальность ИМС заключается в том, что она может быть использована и как три самостоятельных элемента НЕ, и как элемент ЗИЛИ-НЕ (рис.Зб), и как элемент НЕ с большим коэффициентом разветвпения (рис.Зв).

Рис. 2. Широтно-импульсный модулятор на одной КМОП-микросхеме.

Рис. 3. Структура микросхемы К176ЛП1.

Микросхема содержит шесть МОП-транзисторов, три из которых (VT1...VT3) - с п-каналом, три других (VT4... VT6)-с р-каналом. Напряжение питания подают на выводы 14 (+9 В) и 7 (общий), выводы 6, 3 и 10 - входы, остальные - выходы.

Разные по функциональному назначению логические элементы получают путем соответствующих соединений входных и выходных выводов. Модулятор (рис.2) изменяет коэффициент заполнения импульсов автогенератора в соответствии с управляющим напряжением.

Регулирование коэффициента заполнения обеспечивается шунтированием времязадающего резистора R2 сопротивлением каналов полевых транзисторов VТ1 и VТ2, входящих в состав микросхемы.

Коэффициент заполнения изменяется в пределах от 1 до 99% периода рабочей частоты. Недостатком этого генератора является ненадежный запуск при уменьшении емкости времязадающего конденсатора С1 (при увеличении частоты генерации).

Для устранения этого недостатка предлагаю выполнить широтно-импульсный модулятор на трех логических элементах (рис.4). Трехэлементный генератор запускается в любом случае, а конденсатор просто снижает его частоту. Широтно-импульсный модулятор построен на микросхеме DD2 и инверторе DD1.

Полевые транзисторы VТ1 и VТ2 из состава микросхемы подключены через диоды VD1 и VD2 параллельно резистору R2.

Рис. 4. Широтно-импульсный модулятор на трех логических элементах.

При высоком уровне на выходе генератора диод VD2 открывается, т.е. сопротивление п-канала VТ2 включается параллельно R2. Подобным образом сопротивление р-канала VТ1 включается через VD1 параллельно R2 при низком уровне на выходе генератора.

Широтно-импульсный модулятор измененяет коэффициент заполнения импульсов генератора в соответствии с управляющим напряжением. Само изменение частоты колебаний минимально зависит от коэффициента заполнения, т.к. сопротивление канала одного транзистора возрастает, а другого уменьшается при любой величине управляющего напряжения. Таким образом, среднее за период значение шунтирующего резистор R2 сопротивления остается постоянным.

Увеличение управляющего напряжения, поступающего на модулятор, приводит к увеличению длительности выходных импульсов, уменьшение - наоборот. Частота колебаний остается неизменной. Данный генератор может генерировать сигнал частотой до 10 МГц.

В. Калашник, г. Воронеж. E-mail: kalaviv[a]mail.ru. РМ-07-12.

Литература:

  1. Широтно-импульсный модулятор на одной КМОП микросхеме. - Электроника, 1977, №13, С.55.
  2. Генераторы на элементах КМОП. - Схемотехника, 2007, №6, С.37.


Вам также будет интересно:

История человечества от возникновения до наших дней в предельно сжатом виде с еще более кратким прогнозом на будущее
Виталий Ашер История человечества как результат развития желаний Размышляя над разгадкой...
Синдром дырявого кишечника - Candida и аутоиммунные заболевания Аутоиммунные заболевания жкт у детей
Иммунная система нашего организма – это сложная сеть специальных органов и клеток, которые...
Как научить своего ребенка писать изложение
Работа ОГЭ по русскому языку начинается с написания сжатого изложения . Существуют разные...
Сапегин александр павлович
Текущая страница: 1 (всего у книги 34 страниц) [доступный отрывок для чтения: 19...
Необыкновенные явления Природы
Удивительные вещи порой создает природа. Феномены природных явлений удивляют и восхищают. И...