Измерение напряжения. Среднеквадратичный вольтметр переменного тока Каким вольтметром можно измерить напряжение звукового сигнала

Для измерения переменного напряжения используются аналоговые электромеханические приборы (электромагнитные, электродинамические, редко - индукционные), аналоговые электронные приборы (в том числе выпрямительной системы) и цифровые измерительные приборы. Для измерений могут также использоваться компенсаторы, осциллографы, регистрирующие устройства и виртуальные приборы.

При измерении переменного напряжения следует различать мгновенное, амплитудное, среднее и действующее значения искомого напряжения.

Синусоидальное переменное напряжение может быть представлено в виде следующих соотношений:

где u(t) - мгновенное значение напряжения, В; U m - амплитудное значение напряжения, В; (У - среднее значение напряжения, В Т - период

(Т = 1//) искомого синусоидального напряжения, с; U - действующее значение напряжения, В.

Мгновенное значение переменного тока может быть отображено на электронном осциллографе или с помощью аналогового регистратора (самописца).

Средние, амплитудные и действующие значения переменных напряжений измеряются стрелочными или цифровыми приборами непосредственной оценки или компенсаторами переменных напряжений. Приборы для измерения средних и амплитудных значений используются сравнительно редко. Большая часть приборов градуируется в действующих значениях напряжения. Из этих соображений количественные значения напряжений, приведенные в учебном пособии, даны, как правило, в действующих значениях (см. выражение (23.25)).

При измерениях переменных величин большое значение имеет форма искомых напряжений, которые могут быть синусоидальными, прямоугольными, треугольными и др. В паспортах на приборы всегда указывается, для измерения каких напряжений рассчитан прибор (например, для измерения синусоидальных напряжений или прямоугольных). При этом всегда указывается, какой параметр переменного напряжения измеряется (амплитудное значение, среднее значение или действующее значение измеряемого напряжения). Как уже отмечалось, большей частью используется градуировка приборов в действующих значениях искомых переменных напряжений. В силу этого все далее рассматриваемые переменные напряжения даны в действующих значениях.

Для расширения пределов измерения вольтметров переменных напряжений используются добавочные сопротивления, измерительные трансформаторы и добавочные емкости (с приборами электростатической системы).

Использование добавочных сопротивлений для расширения пределов измерения уже рассмотрено в подразделе 23.2 применительно к вольтметрам постоянного напряжения и поэтому в данном подразделе не рассматривается. Не рассматриваются также измерительные трансформаторы напряжения и тока. Сведения по трансформаторам даны в литературе .

При более детальном рассмотрении использования добавочных емкостей для расширения пределов измерения электростатистики вольтметров может применяться одна дополнительная емкость (рис. 23.3, а) или же могут быть применены две дополнительные емкости (рис. 23.3, б).

Для схемы с одной дополнительной емкостью (рис. 23.3, а ) измеряемое напряжение U распределяется между емкостью вольтметра С у и дополнительной емкостью С обратно пропорционально значениям С у и С

Учитывая, что U c = U- Uy, можно записать

Рис. 23.3. Схема расширения пределов измерения электростатических

вольтметров:

а - схема с одной добавочной емкостью; б - схема с двумя добавочными емкостями; U - измеряемое переменное напряжение (действующее значение); С, С, С 2 - добавочные емкости; C v - емкость используемого электростатического вольтметра V; U c - падение напряжения на дополнительной емкости С; U v - показание электростатического вольтметра

Решая уравнение (23.27) относительно U, получим:

Из выражения (23.28) следует, что чем больше измеряемое напряжение U по сравнению с предельно допускаемым напряжением для данного электростатического механизма, тем меньше должна быть емкость С по сравнению с емкостью С у.

Следует отметить, что формула (23.28) правомерна лишь при идеальной изоляции конденсаторов, образующих емкости С и C v . Если же диэлектрик, изолирующий пластины конденсаторов друг от друга, имеет потери, то возникают дополнительные погрешности. Кроме того, емкость вольтметра С у зависит от измеряемого напряжения U, так как от U зависят показания вольтметра и соответственно взаимное расположение подвижных и неподвижных пластин, образующих электростатический измерительный механизм. Последнее обстоятельство приводит к появлению еще одной дополнительной погрешности.

Лучшие результаты получаются, если вместо одной добавочной емкости использовать две добавочные емкости С (и С 2 , образующие делитель напряжения (см. рис. 23.3, б).

Для схемы с двумя добавочными емкостями правомерно соотношение

где U a - падение напряжения на емкости С у

Учитывая, что можно записать

Решая уравнение (23.30) относительно U, получим:

Из выражения (23.31) можно сделать вывод, что если емкость конденсатора С 2 , к которому подключен вольтметр, значительно превышает емкость самого вольтметра, то распределение напряжения практически не зависит от показания вольтметра. Кроме того, при С 2 » С у изменение сопротивления изоляции конденсаторов С, и С 2 и частоты

Таблица 23.3

Пределы и погрешности измерения переменных напряжений

измеряемого напряжения также мало влияют на показания прибора. То есть при использовании двух добавочных емкостей дополнительные погрешности результатов измерений значительно снижаются.

Пределы измерения переменных напряжений приборами разных типов и наименьшие погрешности этих приборов приведены в табл. 23.3.

В качестве примеров в приложении 5 (табл. П.5.1) приведены технические характеристики универсальных вольтметров, позволяющих измерять, в том числе, и переменные напряжения.

В заключение следует отметить следующее.

Погрешности измерения токов (постоянных и переменных) приборами одного типа и в равных условиях всегда больше погрешностей измерения напряжений (и постоянных, и переменных). Погрешности измерения переменных токов и напряжений приборами одного типа и в равных условиях всегда больше погрешностей измерения постоянных токов и напряжений.

Более подробную информацию по затронутым вопросам можно получить в .

Цель работы - исследование метрологических характеристик электронных вольтметров

Ознакомиться с используемой аппаратурой и инструкциями по ее применению. Получить у преподавателя конкретное задание по выполнению работы.

Определить основную погрешность электронного вольтметра на диапазоне измерений, указанном преподавателем. Построить на одном графике зависимости относительной и приведенной погрешностей от показаний электронного вольтметра. Сделать вывод о соответствии поверяемого вольтметра своему классу точности.

Определить амплитудно-частотную характеристику АЧХ электронного вольтметра. Построить график АЧХ и определить рабочую полосу частот вольтметра на уровне затухания АЧХ, определяемом нормативно-технической документацией на поверяемый вольтметр.

Экспериментально оценить АЧХ цифрового вольтметра. Провести сравнительный анализ амплитудно-частотных характеристик электронного, цифрового и электромеханического 11 Примечание 1 . Результаты исследований по электромеханическим вольтметрам взять из лабораторной работы №1, если она предварительно выполнялась. вольтметров. Построить графики АЧХ исследуемых приборов.

Измерить электронным вольтметром напряжения различной формы (синусоидальной, прямоугольной и треугольной) с одинаковой амплитудой на частотах, лежащих в рабочей полосе частот этого прибора. Объяснить и подтвердить расчетами полученные результаты. Сделать вывод о влиянии формы измеряемого напряжения на показания электронного вольтметра.

Описание и порядок выполнения работы

Используемые приборы

Электронный вольтметр с аналоговым выходом - GVT-417В

Прибор измерительный универсальный с цифровой индикацией - GDM-8135

Генератор гармонических сигналов - SFG-2120

Осциллограф электронный - GOS-620

Описания приборов прилагаются на стенде .

Для выполнения работы применяют схему, представленную на рис. 2.1, где ГС - генератор (синтезатор) сигналов синусоидальной, прямоугольной и треугольной формы,ЦВ - цифровой вольтметр, ЭВ - электронный вольтметр, ЭЛО - электронно-лучевой осциллограф.

1. Основную погрешность электронного вольтметра определяют методом сличения, т.е. сравнением его показаний с показаниями образцового, в данном случае цифрового вольтметра, при синусоидальном напряжении. Показания образцового вольтметра принимаются за действительные значения напряжения.

Поверку электронного вольтметра GVT-417B проводят при частоте 1кГц на шкалах с верхними пределами 1В или 3В, что обусловлено диапазоном регулирования выходного напряжения используемого генератора.

Поверку проводят для n = (610) отметок шкалы, равномерно распределенных по шкале прибора, при плавном увеличении и уменьшении его показаний

Поверяемые точки напряжения U п устанавливают на поверяемом электронном вольтметре, а действительные значения напряжений U о ув, U о ум снимают с образцового цифрового вольтметра соответственно при подходе к поверяемой отметке U п шкалы при увеличении и уменьшении показаний.

Результаты измерений и расчетов представляют в виде таблицы.

Абсолютную, относительную, приведенную погрешности и вариацию показаний определяют по формулам, приведенным в лабораторной работе 1 или в ; определяют также максимальную приведенную погрешность max = Мах{| i |} и максимальную вариацию H max = Мах{H i }, полученные в результате эксперимента.

По результатам испытаний и расчетов строят на одном графике зависимости относительной и приведенной погрешностей от показаний электронного вольтметра, = F (U п), = F (U п); на графике также проводят линии, определяющие границы предельно допустимой приведенной погрешности, соответствующей классу точности поверяемого прибора.

На основании анализа данных об основной погрешности и вариации показаний делают вывод о соответствии указанных характеристик требованиям, определяемым классом точности поверяемого прибора.

2. Амплитудно-частотную характеристику электронного вольтметра определяют как зависимость показаний вольтметра от частоты входного синусоидального сигнала при постоянном значении его напряжения.

На практике широко используют понятие рабочей полосы частот средства измерений. Под рабочей полосой частот вольтметра понимают диапазон частот f , для которого неравномерность АЧХ вольтметра не превосходит некоторой заранее установленной допустимой величины. Так, для электронного вольтметра GVT-417B в пределах рабочей полосы допускается не более чем 10-ти процентное изменение показаний прибора от показания на частоте f 0 = 1КГц.

Крайние значения диапазона частот, удовлетворяющего указанному требованию, называются нижней f Н и верхней f В граничными частотами рабочей полосы электронного вольтметра.

Определение АЧХ проводят также по схеме, представленной на рис. 2.1. В качестве источника сигналов используют генератор SFG-2120, который обеспечивает постоянство амплитуды выходного сигнала при изменении частоты в его рабочем диапазоне.

Предварительно на генераторе ГС устанавливают частоту f 0 =1кГц при синусоидальной форме сигнала. С помощью регулятора выходного напряжения генератора ГС устанавливают показание электронного вольтметра на отметке шкалы в диапазоне (0.7-0.9) от верхнего предела измерений и записывают установленное значение напряжения U П (f 0 =1кГц) = … .

В дальнейшем при определении АЧХ изменяют только частоту генератора сигналов ГС, а напряжение, снимаемое с генератора, не изменяют.

Для контроля уровня сигнала и его формы используют электронно-лучевой осциллограф. На экране осциллографа, путем выбора коэффициентов (VOLTS/DIV) отклонения и коэффициентов (TIME/DIV) развертки, получают удобную для наблюдений и измерений осциллограмму - изображение нескольких периодов синусоиды с достаточно большой амплитудой; записывают амплитуду l А (или l 2А - двойную амплитуду) изображения сигнала для последующего контроля уровня сигнала.

АЧХ удобно определять отдельно для области верхних и области нижних частот.

В области верхних частот АЧХ начинают снимать с шагом 100 кГц: 1 кГц (начальная частота), 100 кГц, 200 кГц, … до частоты, при которой показания электронного вольтметра упадут до величины порядка 0,8-0,9 от первоначально установленного показания U П (f 0 =1кГц). Для уточнения верхней частоты f в рабочей полосы частот f электронного вольтметра в районе 10-ти процентного спада АЧХ необходимо дополнительно снять несколько точек АЧХ с меньшим шагом изменения частоты входного сигнала.

В процессе проведения испытаний постоянный уровень выходного сигнала ГС контролируют электронным осциллографом.

Результаты испытаний и расчетов записать в таблицу:

Для ЭВ f В = … для ЦВ f В = …

где U П (f ) - показания вольтметра на частоте f ; K (f ) = U П (f ) /U П (f о = 1 кГц) - АЧХ вольтметра, представленная в относительных единицах для соответствующих частот, f в - верхняя граничная частота рабочей полосы вольтметра, найденная в эксперименте.

При выполнении задания аналогичным образом при тех же частотах оценивается АЧХ цифрового вольтметра. Результаты испытаний заносятся в ту же таблицу. Поскольку в данной работе требуется сравнить рабочие полосы частот электронного и цифрового вольтметров в качественном смысле, не обязательно уточнять АЧХ цифрового вольтметра в дополнительных точках по частоте. При этом значения граничных частот цифрового вольтметра будут определены с меньшей точностью.

Нижняя граничная частота f н рабочей полосы f для электронных вольтметров переменного тока обычно находится в области единиц и первых десятков Гц. Поэтому процедура определения АЧХ в области нижних частот может быть следующей: сначала уменьшают частоту от исходной f 0 =1000Гц через 200Гц, а затем от 50Гц - через 10Гц. При необходимости уточняют нижнюю частоту f н рабочей полосы, при которой АЧХ падает до уровня 0.9 от ее значения при f 0 =1000Гц, снятием дополнительных точек с шагом 1Гц.

Оценка АЧХ цифрового вольтметра проводится при тех же частотах.

Результаты испытаний и расчетов представляют в виде таблицы:

Для ЭВ f н = …Гц, для ЦВ f н = …Гц.

По результатам проведенных исследований строятся графики АЧХ для верхних и нижних частот. По оси частот графики удобно строить в логарифмическом масштабе.

3. Определение влияния формы входного сигнала на показания вольтметров переменного тока.

В электронных вольтметрах переменного тока применяют преобразователи Пр переменного напряжения в постоянное, как, например, показано на рис. 2.2, где: u вх (t ) - входное напряжение, У - усилитель переменного тока, ИМ - магнитоэлектрический измерительный механизм, - угол отклонения измерительного механизма.

Используют преобразователи амплитудного, средневыпрямленного или действующего значений переменного напряжения в постоянное. В то же время все электронные вольтметры переменного тока, не зависимо от вида преобразователя, градуируются в действующих значениях синусоидального напряжения . Это может привести к появлению дополнительных погрешностей при измерении несинусоидальных напряжений.

Электронный вольтметр GVT-417B имеет преобразователь средневыпрямленного значения. Для таких вольтметров угол отклонения указателя пропорционален средневыпрямленному значению U ср входного напряжения

где: k V - коэффициент преобразования вольтметра, u вх (t ) - входное переменное напряжение с периодом Т .

Показания U п вольтметра градуируются в действующих U значениях синусоидального напряжения

где: k Ф = U /U СР - коэффициент формы напряжения, для синусоидального напряжения k Ф = 1,11. Следовательно, для другой формы напряжения (k Ф? 1,11) показания вольтметра могут значительно отличаться от его действующего значения, что приводит к появлению дополнительной погрешности результата измерений.

В таких случаях искомые напряжения при известной форме сигналов можно находить расчетным путем.

Исходя из принципа действия вольтметра и принятой градуировки можно по показаниям U П прибора определить средневыпрямленное значение любого (в пределах АЧХ вольтметра) измеряемого напряжения

U СР = U П /1,11.

Действующее значение U несинусоидального напряжения может быть определено только в том случае, когда известен коэффициент k Ф формы кривой напряжения, k Ф = U/ U СР (или известна форма сигнала, по которой может быть определен этот коэффициент)

U= k Ф U СР.

Численные значения коэффициентов формы для некоторых сигналов представлены в таблице.

Для экспериментальной оценки влияния формы напряжения на показания электронного вольтметра последовательно измеряют сигналы синусоидальной, прямоугольной и треугольной формы при их одинаковой амплитуде.

Предварительно на синусоидальном сигнале устанавливают показания вольтметров в диапазоне 0.5 - 0.6 от верхнего предела измерений выбранной шкалы при номинальной частоте f н =1 кГц , а затем при той же амплитуде входных сигналов измеряют вольтметром напряжения при других формах сигнала. Формы сигналов (синусоидальная, треугольная, прямоугольная) устанавливается нажатием на клавишу “Wave ” на генераторе.

По показаниям U П вольтметра определяют среднее U СР и действующее U значения напряжений для всех форм сигналов.

Для оценки влияния формы напряжения на показания электронного вольтметра с преобразователем средневыпрямленного напряжения определяют дополнительную относительную погрешность (в процентах)

100(U П - U )/ U .

Результаты измерений и расчетов записывают в таблицу.

Следует заметить, что дополнительная погрешность войдет в результат измерений, если действующие значения напряжений несинусоидальной формы определять непосредственно по показаниям вольтметра без учета формы сигнала и проведения соответствующих расчетов.

По результатам исследований сделать вывод о влиянии формы кривой напряжения на результаты его измерения электронным вольтметром.

Литература

Метрология, стандартизация и сертификация: учебник для студ. высш. учеб. заведений/[Б.Я.Авдеев, В.В.Алексеев, Е.М.Антонюк и др.]; под ред В.В.Алексеева. - М. : Издательский центр «Академия», 2007. стр. 136-140.

Основной единицей измерения электрического напряжения является вольт. В зависимости от величины напряжение может измеряться в вольтах (В), киловольтах (1 кВ = 1000 В), милливольтах (1 мВ = 0,001 В), микровольтах (1 мкВ = 0,001мВ = 0,000001 В). На практике, чаще всего, приходится сталкиваться с вольтами и милливольтами.

Существует два основных вида напряжений – постоянное и переменное . Источником постоянного напряжения служат батареи, аккумуляторы. Источником переменного напряжения может служить, например, напряжение в электрической сети квартиры или дома.

Для измерения напряжения используют вольтметр . Вольтметры бывают стрелочные (аналоговые) и цифровые .

На сегодняшний день стрелочные вольтметры уступают пальму первенства цифровым, так как вторые более удобны в эксплуатации. Если при измерении стрелочным вольтметром показания напряжения приходится вычислять по шкале, то у цифрового результат измерения сразу высвечивается на индикаторе. Да и по габаритам стрелочный прибор проигрывает цифровому.

Но это не значит, что стрелочные приборы совсем не применяются. Есть некоторые процессы, которые цифровым прибором увидеть нельзя, поэтому стрелочные больше применяются на промышленных предприятиях, лабораториях, ремонтных мастерских и т.п.

На электрических принципиальных схемах вольтметр обозначается кружком с заглавной латинской буквой «V » внутри. Рядом с условным обозначением вольтметра указывается его буквенное обозначение «PU » и порядковый номер в схеме. Например. Если вольтметров в схеме будет два, то около первого пишут «PU 1 », а около второго «PU 2 ».

При измерении постоянного напряжения на схеме указывается полярность подключения вольтметра, если же измеряется переменное напряжение, то полярность подключения не указывается.

Напряжение измеряют между двумя точками схемы: в электронных схемах между плюсовым и минусовым полюсами, в электрических схемах между фазой и нулем . Вольтметр подключают параллельно источнику напряжения или параллельно участку цепи — резистору, лампе или другой нагрузке, на которой необходимо измерить напряжение:

Рассмотрим подключение вольтметра: на верхней схеме напряжение измеряется на лампе HL1 и одновременно на источнике питания GB1 . На нижней схеме напряжение измеряется на лампе HL1 и резисторе R1 .

Перед тем, как измерить напряжение, определяют его вид и приблизительную величину . Дело в том, что у вольтметров измерительная часть рассчитана только для одного вида напряжения, и от этого результаты измерений получаются разными. Вольтметр для измерения постоянного напряжения не видит переменное, а вольтметр для переменного напряжения наоборот, постоянное напряжение измерить сможет, но его показания будут не точными.

Знать приблизительную величину измеряемого напряжения также необходимо, так как вольтметры работают в строго определенном диапазоне напряжений, и если ошибиться с выбором диапазона или величиной, прибор можно повредить. Например. Диапазон измерения вольтметра составляет 0…100 Вольт, значит, напряжение можно измерять только в этих пределах, так как при измерении напряжения выше 100 Вольт прибор выйдет из строя.

Помимо приборов, измеряющих только один параметр (напряжение, ток, сопротивление, емкость, частота), существуют многофункциональные, в которых заложено измерение всех этих параметров в одном приборе. Такой прибор называется тестер (в основном это стрелочные измерительные приборы) или цифровой мультиметр .

На тестере останавливаться не будем, это тема другой статьи, а сразу перейдем к цифровому мультиметру. В основной своей массе мультиметры могут измерять два вида напряжения в пределах 0…1000 Вольт. Для удобства измерения оба напряжения разделены на два сектора, а в секторах на поддиапазоны: у постоянного напряжения поддиапазонов пять, у переменного — два.

У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 200m , 2V , 20V , 200V , 600V . Например. На пределе «200V» измеряется напряжение, находящееся в диапазоне 0…200 Вольт.

Теперь сам процесс измерения .

1. Измерение постоянного напряжения.

Вначале определяемся с видом измеряемого напряжения (постоянное или переменное) и переводим переключатель в нужный сектор. Для примера возьмем пальчиковую батарейку, постоянное напряжение которой составляет 1,5 Вольта. Выбираем сектор постоянного напряжения, а в нем предел измерения «2V», диапазон измерения которого составляет 0…2 Вольта.

Измерительные щупы должны быть вставлены в гнезда, как показано на нижнем рисунке:

красный щуп принято называть плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп называют минусовым или общим и вставляется он в гнездо, напротив которого стоит значок «СОМ». Относительно этого щупа производятся все измерения.

Плюсовым щупом касаемся положительного полюса батарейки, а минусовым — отрицательного. Результат измерения 1,59 Вольта сразу виден на индикаторе мультиметра. Как видите, все очень просто.

Теперь еще нюанс. Если на батарейке щупы поменять местами, то перед единицей появится знак минуса, сигнализирующий, что перепутана полярность подключения мультиметра. Знак минуса бывает очень удобен в процессе наладке электронных схем, когда на плате нужно определить плюсовую или минусовую шины.

Ну а теперь рассмотрим вариант, когда величина напряжения неизвестна. В качестве источника напряжения оставим пальчиковую батарейку.

Допустим, мы не знаем напряжение батарейки, и чтобы не сжечь прибор измерение начинаем с самого максимального предела «600V», что соответствует диапазону измерения 0…600 Вольт. Щупами мультиметра касаемся полюсов батарейки и на индикаторе видим результат измерения, равный «001 ». Эти цифры говорят о том, что напряжения нет или его величина слишком мала, или выбран слишком большой диапазон измерения.

Опускаемся ниже. Переключатель переводим в положение «200V», что соответствует диапазону 0…200 Вольт, и щупами касаемся полюсов батарейки. На индикаторе появились показания равные «01,5 ». В принципе этих показаний уже достаточно, чтобы сказать, что напряжение пальчиковой батарейки составляет 1,5 Вольта.

Однако нолик, стоящий впереди, предлагает снизиться еще на предел ниже и точнее измерить напряжение. Снижаемся на предел «20V», что соответствует диапазону 0…20 Вольт, и снова производим измерение. На индикаторе высветились показания «1,58 ». Теперь можно с точностью сказать, что напряжение пальчиковой батарейки составляет 1,58 Вольта.

Вот таким образом, не зная величину напряжения, находят ее, постепенно снижаясь от высокого предела измерения к низкому.

Также бывают ситуации, когда при измерении в левом углу индикатора высвечивается единица «1 ». Единица сигнализирует о том, что измеряемое напряжение или ток выше выбранного предела измерения. Например. Если на пределе «2V» измерить напряжение равное 3 Вольта, то на индикаторе появится единица, так как диапазон измерения этого предела всего 0…2 Вольта.

Остался еще один предел «200m» с диапазоном измерения 0…200 mV. Этот предел предназначен для измерения совсем маленьких напряжений (милливольт), с которыми иногда приходится сталкиваться при наладке какой-нибудь радиолюбительской конструкции.

2. Измерение переменного напряжения.

Процесс измерения переменного напряжения ни чем не отличается от измерения постоянного. Отличие состоит лишь в том, что для переменного напряжения соблюдать полярность щупов не требуется.

Сектор переменного напряжения разбит на два поддиапазона 200V и 600V .
На пределе «200V» можно измерять, например, выходное напряжение вторичных обмоток понижающих трансформаторов, либо любое другое находящееся в диапазоне 0…200 Вольт. На пределе «600V» можно измерять напряжения 220 В, 380 В, 440 В или любое другое находящееся в диапазоне 0…600 Вольт.

В качестве примера измерим напряжение домашней сети 220 Вольт.
Переводим переключатель в положение «600V» и щупы мультиметра вставляем в розетку. На индикаторе сразу появился результат измерения 229 Вольт. Как видите, все очень просто.

И еще один момент.
Перед измерением высоких напряжений ВСЕГДА лишний раз убеждайтесь в исправности изоляции щупов и проводов вольтметра или мультиметра , а также дополнительно проверяйте выбранный предел измерения . И только после всех этих операций производите измерения . Этим Вы убережете себя и прибор от неожиданных сюрпризов.

А если что осталось не понятно, то посмотрите видеоролик, где показано измерение напряжения и силы тока с помощью мультиметра.

Бесперебойная работа электроприборов во многом зависит от уровня напряжения в сети, правильности подачи тока, целостности проводки. Провести измерение переменного напряжения можно с помощью мультиметра. Это незаменимый помощник в своевременном выявлении проблем в электросети и обеспечении безопасного использования бытовых и профессиональных приборов.

Особенности, функции, виды приборов

Данное устройство – универсальный регистратор множества электрических величин. В зависимости от модельного ряда и набора функций, которые они выполняют, мультиметры нашли свое применение, как в быту, так и в арсенале профессиональных электриков.

Средний по стоимости мультиметр может измерить:

  • показатель переменного напряжения в сети и постоянное напряжение аккумулятора или батарейки;
  • постоянный и переменный ток (силу тока);
  • уровень сопротивления;
  • работоспособность диодов (режим прозвонки);
  • частоту тока;
  • температуру;
  • величину емкости конденсатора.

Устройства нового образца могут иметь низкочастотный генератор и звуковой пробник. Среди всего ассортимента изделий стоит выделить 2 основных типа приборов.

Электронный (цифровой) тип. Полученные показатели отображаются на экране, который окружен индикаторами из семи сегментов. Большинство из них работает в автоматическом режиме, предельное значение величин мультиметр определяет самостоятельно, исходя из полученных данных. Нужно просто выбрать вид измерения. Другие модели могут передавать данные напрямую в компьютер для их дальнейшей обработки.

Стрелочный тип. Этот вид устройства станет настоящим спасением, когда сильные помехи нарушают нормальное функционирование электронного мультиметра и полностью искажают информацию.

В домашних условиях достаточно будет проводить измерения тока мультиметром электронного типа с разрядностью 3,5. Это приборы наподобие dt 831, 832 или более новой модификации dt 834.

Элементы корпуса

Так как все большим спросом стали пользоваться цифровые модели, обозначения и основные характеристики мультиметров будут рассмотрены именно на их примере.

Они оснащены жидкокристаллическим экраном, который выдает измеренные значения величин. Чуть ниже расположен, вращающийся вокруг своей оси переключатель. Он указывает выбранный вид и пределы измерений.

К гнездам на корпусе мультиметра присоединяются 2 щупа с проводами: красный или положительный, черный или отрицательный.

К разъему подписанному, как «земля» либо «СОМ», всегда подключается отрицательный щуп. Положительный подсоединяется в любое другое гнездо.

Следует отметить, что разъемов может быть 2, 3 или 4. Их количество зависит от модели и производителя. Однако и в таких мультиметрах может меняться гнездо для подсоединения только положительного щупа, отрицательный остается на прежнем месте.

Режимы работы тестера

Работа мультиметра и его режимов регулируется с помощью переключателя. Его верхнее вертикальное положение говорит о том, что устройство выключено.
Поворот в любую другую сторону говорит о смене режима и обозначается следующим образом:

Все результаты отображаются на экране тестера за считанные секунды, с точностью до сотых сообщая о величине выбранного показателя.

Обозначение переменного тока на любом мультиметре может быть изображено в виде символов АС (alternating current). Соответственно, АСА – сила переменного тока, ACV – напряжение переменного тока. Это ток, который изменяет направление движения огромное, но постоянное количество раз за 1 секунду. В домашних сетях частота изменений составляет 50 Гц.

Последовательность подключения

Важно заметить, что приступая к замерам уровня переменного тока, соблюдать полярность подсоединения щупов вовсе необязательно. В случае если ее значение отрицательно, то на экране перед цифрами просто отобразиться знак «минус».

Переключатель мультиметра, измеряющий данный показатель, ставим в соответствующее положение и устанавливаем диапазон измерений.

К выбору пределов замеров стоит отнестись максимально ответственно. Если измеряемый ток значительно превысит выбранный диапазон, это может спровоцировать перегорание предохранителя или, что еще хуже, – всего мультиметра.

Обратите внимание на выбор разъема (гнезда). Под ним должно стоять максимальное значение силы тока, которую вы хотите измерить. 10 А означает, что измеряется ток до 10 А (довольно большой).

Чтобы урегулировать процесс измерений вначале переключатель устанавливается на предельно допустимый диапазон значений, вставляют штекеры щупов в гнезда. Далее по мере необходимости снижают уровень.

Чтобы измерить силу переменного или постоянного тока, мультиметр надо включить в цепь последовательно с нагрузкой (фонарик, светильник, кулер, радиосхема и т.д.). Это основное правила для всех измерительных электроприборов. То есть для измерения тока мультиметр включают «в разрыв» цепи.

Как определить значение переменного напряжения в сети

Важным моментом при определении переменного напряжения является тот факт, что щупы мультиметра подключаются к измеряемому устройству параллельно. Это связано с тем, что напряжение само по себе – разность потенциалов между двумя точками.

Можно воспользоваться тем же принципом, что и в случае с переменным током. Диапазон величины регулировать от максимального к минимальному, не забывая про положение щупов.

В качестве примера для измерения переменного напряжения можно воспользоваться стандартной батарейкой. Переключатель ставится на соответствующий режим, устанавливается диапазон. При этом щупы касаются батарейки параллельно друг другу с обеих сторон. И моментально видно, как экран отображает величину напряжения исследуемого элемента.

С постоянным напряжением ситуация та же, только нужно не забывать переставлять переключатель на правильный режим.

Независимо от модели и специфики работы мультиметра важно соблюдать инструкцию по технике пожарной безопасности, правильно обращаться с электрическими приборами, не подвергая риску свое здоровье.

Мы уже рассматривали, что переменное напряжение характеризуется мгновенным, средним, средневыпрямленным и среднеквадратическим значениями.

Градуировку большинства шкал вольтметров, кроме импульсных, производят в среднеквадратических (действующих) значениях, которые равны 0,707 от амплитудного значения. Если известны коэффициенты формы, то по одному из параметров можно определить другие. При измерении синусоидальных напряжений мгновенное значение (амплитуда) определяется как U=Uизм*1,41, гдеUизм – действующее значение илиU=1,1*Uсв (если измеряется средневыпрямленное значение). При измерении несинусоидальных сигналов в показания также должны быть введены поправки.

Для измерения переменного напряжения применяют электромеханические, термоэлектрические и электронные приборы. Выбор прибора определяется предельными значениями напряжения, условиями измерений, требуемой точностью.

Из электромеханических приборов применяются в основном приборы электромагнитной, электродинамической и электростатической систем.

Вольтметры переменного напряжения классифицируются по различным признакам:

    по назначению: импульсные, переменного тока, фазочувствительные, селективные, универсальные;

    по методу измерения: непосредственной оценки и сравнения с мерой;

    по измеряемому параметру напряжения: амплитудные, среднеквадратические и средневыпрямленные;

    по типу индикатора: стрелочные и цифровые.

Большинство вольтметров электромагнитной системы применяются на частотах 50 Гц. Класс точности – 2,5 – 0,5.Электродинамические вольтметры имеют тот же частотный диапазон, но более высокий класс точности (0,1). Уравнение шкалы носит квадратичный характер. Достоинства – простота конструкции, возможность непосредственного применения в цепях переменного напряжения, надежность. Недостатки – низкая чувствительность, большое потребление от измерительной цепи, неравномерность шкалы.

Электростатические вольтметры применяют для измерения высоких (до 100 кВ) напряжений. Класс точности 1.

Измерение напряжения высокой частоты имеет свои особенности. Чтобы прибор не влиял на измерительную цепь, необходимо, чтобы его входное сопротивление было большим, а входная емкость как можно меньше.

В практике радиоэлектронных измерений наибольшее распространение получили электронные и выпрямительные вольтметры. Это объясняется тем, что электронные вольтметры имеют высокое входное сопротивление как на высоких, так и на низких частотах, высокую чувствительность при использовании усилителя, малое потребление из измерительной цепи.

Измерение переменного напряжения методом непосредственной оценки.

Электронные вольтметры.

Структурные схемы электронных вольтметров строятся в основном по двум схемам, милливольтметры и вольтметры для измерений больших напряжений. Они представлены на рисунке М2-8.

Рисунок М2-8. Электронные вольтметры для измерений переменных напряжений.

Вольтметры для измерения больших напряжений состоят из входного устройства, преобразователя переменного напряжения в постоянное (детектора), усилителя постоянного тока и измерителя магнитоэлектрической системы. Милливольтметры отличаются наличием усилителя переменного напряжения до детектора, служащего для повышения чувствительности.

Вольтметры средних значений строятся по структурной схеме первого типа с преобразователей переменного напряжения в в постоянное по среднему значению. Простейшими вольтметрами средних значений являются выпрямительные вольтметры с преобразователями, выполненными на диодах.

Селективные вольтметры.

Селективные, т.е. избирательные микровольтметры широко применяются для исследования спектра непериодических сигналов. Это высокочувствительные приемники гетеродинного типа с настройкой на определенную частоту или узкий интервал частот. Упрощенная схема селективного вольтметра приведена на рисунке М2-9.

Рисунок М2-9. Схема селективного вольтметра

Измеряемый сигнал частоты Fc подается через входное устройство на смеситель, куда поступает и сигнал от гетеродина. В смесителе измеряемый сигнал преобразуется на промежуточную частоту и усиливается УПЧ. На выходе усилителя имеется вольтметр с цифровым или стрелочным индикатором.

Импульсные вольтметры. Импульсные напряжений измеряют с помощью импульсных вольтметров, которые строятся по схеме аналогового электронного вольтметра с амплитудным детектором. В этих схемах импульсное напряжение преобразуется в напряжение постоянного тока и измеряется его значение. В этой схеме возможно измерение амплитуды только положительных импульсов, для отрицательных необходимо обратное включение диода. Специальные импульсные вольтметры градуируются в амплитудных значениях. Очень часто используют осциллографические методы измерений, которые позволяют не только измерять амплитуду импульсов, но и наблюдать их форму.



Вам также будет интересно:

Лунный календарь на декабрь года неблагоприятные
Энергетика Луны всегда имела большое влияние на деятельность людей. Рекомендации астрологов...
Как пожарить окуня на сковороде: рецепты приготовления
Целиком тушку окуня жарить 15 минут: по 7-8 минут с каждой стороны. Мелкого окуня жарить 10...
Как выучить корейский: советы для начинающих
Если вы интересуетесь изучением корейского языка, то наверняка знаете, что им пользуются в...
Кафедра ультразвуковой диагностики СТК грудной клетки
На практике УЗИ суставов начали применять не так давно, но это позволило расширить...
Лингвист милостью божьей
Is academician A.A. Zaliznyak a dilettante?Академик А.А. Зализняк - любитель?В.А.Чудинов...