Генератор одиночных импульсов. Схемы простых генераторов импульсов

Принципиальная электрическая схема генератора прямоугольных импульсов показана на рисунке. Используя ШИМ-регулятор KA7500В (TL494 немного хуже, так как нет 100% регулировки ШИМ), можно изготовить неплохой генератор прямоугольных импульсов (20 Гц...200 кГц) с регулировкой скважности 0...100%. При этом можно использовать две независимых схемы коммутации с применением схемы с общим эмиттером или общим коллектором (до 250 мА и 32 В), или параллельное включение (до 500 мА). Если вывод 13 переключить с "земляного" на 14-й (стабилизированное 5 В), то выходы будут включаться попеременно.

Согласно документации, КА7500В должна работать при напряжении от 7 до 42 В и токе на каждом выходе до 250 мА. Однако у автора при напряжении выше 35 В микросхемы "стреляли". По току микросхемы на верхних пределах не проверялись из-за боязни сжечь их. Имевшиеся экземпляры микросхем работали и в диапазоне частот от долей герц до 500...1000 кГц (в верхнем диапазоне ШИМ, естественно, хуже из-за увеличения общей доли времени на переключение компараторов и выходных ключей).

Сопротивление резистора на входе генератора должно быть в пределах от 1 кОм до 100 МОм, но изменение частоты нелинейное. А вот изменение частоты от емкости на входе линейное, по крайней мере, до 10 мкФ большие значения автор не пробовал). Точность установки или больший диапазон (от долей герц до 500...1000 кГц) можно расширить, применив большее количество диапазонов.

  • [B]LEAS Спасибо! Уже разобрался. Была под рукой 7805, сваял регулируемый стабилизатор 5-13v. Все работает, все регулируется, амплитуда тоже:))). Кстати на 5 вольтах вроде нормально работает, хотя по даташиту 7v. А 32 v выбрано потому, что, по словам автора " при напряжении выше 35 В микросхемы "стреляли" ". Я вот только сомневаюсь на счет 250ма, хотя по даташиту именно так. Я сделал выходы в параллель. По идее должно быть 500ма, а получается, что я по выходу пару светодиодов цепляю (нагрузочку) у них потребление 20ма при напряжении питания всей схемы 12v, амплитуда сигнала сразу падает до 6v. А ток как-то еще можно увеличить? И как это грамотно сделать?
  • У тебя же выходной каскад-открытый коллектор. Выходной ток определяется резистором 1к по схеме, идущими на 8,11 ножки. Соответственно максимум тока, протекающего через цепь +Пит->1000 ом->транзистор микросхемы->земля будет 12 миллиампер при 12V питания. Где у тебя в схеме получается 6 вольт и каким прибором ты эту величину измерил? А общее питание не проваливается? В качестве буфера можно использовать таймер КР1006ВИ1. Выход до 200 миллиампер.
  • Общее питание не проваливается, стоит стабильно. Вот, что у меня получается (в атаче) В этом варианте что на одном, что на другом рисунке питание схемы 13v. На одном, без нагрузки и амплитуда сигнала где-то 11,5-12v (1в/дел на щупе 1:10) на другом соответственно с нагрузкой 15ma, амплитуда после подключения нагрузки упала до 6-7v. В качестве нагрузки использовал простой светодиод подключенный через резистор 1к. Резики пытался подбирать, если ставить менее 300 ом то микросхема и резик начинают грется (оно и понятно), а если выше, ток маленький. В принципе пока выкрутился, по выходу транзистор первый попавшийся под руку воткнул, ток стал побольше, 150ма, больше пока не проверял. Немножко попозже, по свободней буду, попробую буфер поставить. Ну вот в принципе разобрался в своих вопросах. Еще раз всем ответившим, огромное спасибо! А отдельное ОГРОМНОЕ СПАСИБО!!! [B]LEAS-у. Без его помощи, я еще бы долго мурижил эту схемку.
  • Ты наверное понял, что вместо тумблера на картинках подводится сигнал с твоего генератора. А с нагрузкой-нарисуй как все подключил. Так я что-то не очень сображу. Удачи в творчестве.
  • [B]LEAS Да, я понял на счет 555. Рисую:)))) (в атаче) на первом рисунке по выходу в качестве нагрузки подцеплен светодиод. И соответственно при его подключении получаем такую амплитуду сигнала, как я выкладывал выше. На другом рисунке, я по выходу поставил транзюк (только не знаю правильно или не правильно сделал, но вроде работает) Проверял на токе 150 ма ничего не греется все работает. Только получается, что по выходу защиты никакой на корпус коротнуть и все привет транзику. В отличии от KA7500, живучая оказалась, как только я над ней не экспериментировал:))))) пытался без транзистора, используя только микросхему, уменьшил резики (которые на питание по выходу микрухи, до 150 ом) ток конечно поднялся, но и резик и микросхема ниччинают сильно грется. по этому воткнул транзистор. просто пока мне тока в 150ма хватит. Но в идеале мне нужно 500ма, да и еще хочется, чтобы защита по выходу была, как этого можно добится?
  • Если ты мерял относительно земли на светодиоде по твоей схеме включения там и будет около 6-7 вольт в зависимости от экземпляра светодиода. Я же тебе написал, но ты видимо не обратил внимания. Внутренние транзисторы микросхемы только подключают точку соединения R7,R8,HL1 на землю и всё. А транзистора, подключающего питание в эту точку нет. В его роли выступают соединённые к питанию R7,R8. Когда внутренний транзистор закрыт, то получается просто резистивный делитель. Убери мысленно светодиод-в этой точке он и будет этот делитель. Можно еще вот так, верхние выводы резисторов соответственно питание.
  • Спасибо! Я понял про делитель. Просто ты спрашивал, что и куда я подключал, вот я и ответил. Да там кстати на моем рисунке с транзиком помоему когда рисовал эмиттер с коллектором перепутал местами. А резик для ограничения выходного тока я тоже поствил, просто нарисунке его нет. LEAS, а в этом варианте зачем диод используется?
  • Ну как зачем-биполярный транзистор обратной проводимости откроется(колл-эмит переход) если потенциал базы выше потенциала эмиттера. Низкий потенциал эмиттера обеспечит нагрузка, а высокий потенциал базы-напряжение с резистора. Если диод выбросить, то потенциалы базы и эмиттера будут одинаковы(этому и препятствует диод) и вся схема опять сведется к резистивному делителю-транзистор не будет работать.
  • Нужно 16 ножку оставить в воздухе,а 15 и 7 подпаять к минусу питания.
  • Всем привет.Ребята посоветую ссылочку для TL494:skif_biz статья "ТЭГ-эксперимент по извлечению энергии из поля постоянного магнита".Удачи
  • Может ктонить схему в формате lay выкинуть для генератора? А то блин, стыдно говорить конечно, но ничего у меня не получается(((Еще может ктонить подскаежет чонить простое мне нужно генерировать частоту от 60 до 140 герц и скважность... остальной диапозон мне не нужен, более того, будет неудобно регулировать устройство... заранее спасибо.
  • В выложенной схеме была ошибка - 7 вывод должен быть на минусе... . http://i031.radikal.ru/0805/b8/93dfefe80a28.jpg _http://forum.cxem.net/index.php?showtopic=13268&st=0 ========================================================== Универсальный генератор на TL494 (прямоугольник и пила) - усовершенствованный вариант с "Датагора"... . :) _http://forum.cxem.net/index.php?showtopic=13268&st=320
  • Скажите, а по каким формулам был расчёт номиналов схемы? Интересно
  • По даташиту.
  • я вот просмотрел даташит, но вот связи как-то не совсем ловлю. может кто-то на примере сможет показать как имея датик расчитывать схему (в универе этому не учили), или подсказать где можно такой пример глянуть, был бы премного благодарен. http://archive.espec.ws/files/TL494.PDF
  • О каком датчике идёт речь?
  • СТРВ имел в виду наверно даташит-да,читать их в универе не учат,раньше там учили думать...не знаю,как сейчас.
  • ну как бы всё в общих чертах. а вот как доходит дело до конкретных поставленных задач, то вопрос "и что?" встает.я не троечник, но всё равно многое непонятно.практики расчётов у нас не было как таковой ничего.
  • В даташите приводятся ВСЕ расчетные и временные параметры!Читайте\смотрите ВНИМАТЕЛЬНО! Удачи.
  • практически на любом микроконтроллере с ШИМ можно сделать подобный генератор, который будет стабильно работать. Пример такого генератора есть например, в журнале "Лаборатория электроники и программирования" №1-2. http://journal.electroniclab.ru/journal_content_001.htm http://journal.electroniclab.ru/journal_content_002.htm

Генератор импульсов используется для лабораторных исследований при разработке и наладке электронных устройств. Генератор работает в диапазоне напряжений от 7 до 41 вольта ивысокой нагрузочной способностью зависящей от выходного транзистора. Амплитуда выходных импульсов может быть равна значению питающего напряжения микросхемы, вплоть до предельного значения напряжения питания этой микросхемы +41 В. Его основа - известная всем , часто используемая в .


Аналогами TL494 являются микросхемы KA7500 и её отечественный клон - КР1114ЕУ4 .

Предельные значения параметров:

Напряжение питания 41В
Входное напряжениеусилителя (Vcc+0.3)В
Выходное напряжение коллектора 41В
Выходной ток коллектора 250мА
Общая мощность рассеивания в непрерывном режиме 1Вт
Рабочий диапазон температур окружающей среды:
-c суффиксом L -25..85С
-с суффиксом С.0..70С
Диапазон температур хранения -65…+150С

Принципиальная схема устройства


Схема генератора прямоугольных импульсов

Печатная плата генератора на TL494 и другие файлы находятся в отдельном .


Регулировка частоты осуществляется переключателем S2 (грубо) и резистором RV1 (плавно), скважность регулируется резистором RV2. Переключатель SA1 изменяет режимы работы генератора с синфазного (однотактный) на противофазный (двухтактный). Резистором R3 подбирается наиболее оптимальный перекрываемый диапазон частот, диапазон регулировки скважности можно подобрать резисторами R1, R2.

Детали генератора импульсов

Конденсаторы С1-С4 времязадающей цепи выбираются под необходимый частотный диапазон и емкость их может быть от 10 микрофарад для инфранизкого поддиапазона до 1000 пикофарад - для наиболее высокочастотного.

При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но
разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора – также неудовлетворительно медленно. Для этих целей применяется независимый комплементарный повторитель.

  • Читайте: "Как сделать из компьютерного".
Транзисторы подбираются любые ВЧ с небольшим напряжением насыщения и достаточным запасом по току. Например КТ972+973. В случае отсутствия нужды в мощных выходах, комплементарный повторитель можно исключить. За неимением второго построечного резистора на 20 kOm, были применены два постоянных резистора на 10 kOm, обеспечивающих скважность в пределах 50%. Автор проекта - Александр Терентьев.

Генераторы импульсов предназначены для получения импульсов определенной формы и длительности. Они используются во многих схемах и устройствах. А также их используют в измерительной техники для наладки и ремонта различных цифровых устройств. Прямоугольные импульсы отлично подойдут для проверки работоспособности цифровых схем, а треугольной формы могут пригодиться для свип-генераторов или генераторов качающейся частоты.

Генератор формирует одиночный импульс прямоугольной формы по нажатию на кнопку. Схема собрана на логических элементах в основе которой обычный RS-триггер, благодаря ему также исключается возможность проникновения импульсов дребезга контактов кнопки на счетчик.

В положении контактов кнопки, как показано на схеме, на первом выходе будет присутствовать напряжение высокого уровня, а на втором выходе низкого уровня или логического нуля при нажатой кнопке состояние триггера поменяется на противоположное. Этот генератор отлично подойдет для проверки работы различных счетчиков


В этой схемы формируется одиночный импульс, длительность которого не зависит от длительности входного импульса. Используется такой генератор в самых разнообразных вариантах: для имитации входных сигналов цифровых устройств, при проверке работоспособности схем на основе цифровых микросхем, необходимости подачи на какое-то тестируемое устройство определенного числа импульсов с визуальным контролем процессов и т. д

Как только включают питание схемы конденсатор С1 начинает заряжается и реле срабатывает, размыкая своими фронтовыми контактами цепь источника питания, но реле отключится не сразу, а с задержкой, так как через его обмотку будет протекать ток разряда конденсатора С1. Когда тыловые контакты реле опять замкнутся, начнется новый цикл. Частота переключении электромагнитного реле зависит от емкости конденсатора С1 и резистора R1.

Использовать можно почти любое реле, я взял . Такой генератор можно использовать, например, для переключения елочных гирлянд и других эффектов. Минусом данной схемы является применение конденсатора большой емкости.

Другая схема генератора на реле, с принципом работы аналогичной предыдущей схеме, но в отличии от нее, частота следования равна 1 Гц при меньшей емкости конденсатора. В момент включения генератора конденсатор С1 начинает заряжаться, затем открывается стабилитрон и сработает реле К1. Конденсатор начинает разряжаться через резистор и составной транзистор. Через небольшой промежуток времени реле выключается и начинается новый цикл работы генератора.

В генераторе импульсов, на рисунке А, применены три логических элемента И-НЕ и униполярный транзистор VT1. В зависимости от значений конденсатора С1 и резисторов R2 и R3 на выходе 8 генерируются импульсы с частотой 0,1 - до 1 МГц. Такой огромный диапазон объясняется применению в схеме полевого транзистора, что дало возможность использовать мегаомные резисторы R2 и R3. С помощью их можно менять также менять скважность импульсов: резистором R2 задается длительность высокого уровня, а R3 - длительность напряжения низкого уровня. VT1 можно взять любой из серий КП302, КП303. - К155ЛА3.

Если использовать вместо К155ЛА3 микросхемы КМОП например К561ЛН2 можно сделать широкодиапазонный генератор импульсов без использования в схеме полевого транзистора. Схема этого генератора показана на рисунке В. Для расширения количества генерируемых частот емкость конденсатора времязадающей цепи выбирается переключателем S1. Диапазон частот этого генератора 1ГЦ до 10 кГц.

На последнем рисунке рассмотрена схема генератора импульсов в которой заложена возможность регулировки скважности. Для тех кто забыл, напомним. Скважность импульсов это отношение периода следования (Т) к длительности (t):

Скважность на выходе схемы можно задать от 1 до нескольких тысяч, с помощью резистора R1. Транзистор работающий в ключевом режиме предназначен для усиления импульсов по мощности

Если есть необходимость высокостабильного генератора импульсов, то необходимо использовать кварц на соответствующую частоту.

Схема генератора показанная на рисунке способна вырабатывать импульсы прямоугольной и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3 цифровой микросхемы К561ЛН2. Резистор R2 в паре с конденсатором С2 образуют дифференцирующую цепь, которая на выходе DD1.5 генерирует короткие импульсы длительностью 1 мкс. На полевом транзисторе и резисторе R4 собран регулируемый стабилизатор тока. С его выхода течет ток заряжающий конденсатор С3 и напряжение на нем линейно увеличивается. В момент поступления короткого положительного импульса транзистор VT1 открывается, а конденсатор СЗ разряжается. Тем самым формируя пилообразное напряжение на его обкладках. Переменным резистором можно регулировать ток заряда конденсатора и крутизну импульса пилообразного напряжения, а также его амплитуду.

Вариант схемы генератора на двух операционных усилителях

Схема построена с использованием двух ОУ типа LM741. Первый ОУ используется для генерации прямоугольной формы, а второй генерирует треугольную. Схема генератора построена следующим образом:


В первом LM741 на инвертирующий вход с выхода усилителя подключена обратная связь (ОС) выполненная на резисторе R1 и конденсаторе C2, а на неинвертирующий вход также идет ОС, но уже через делитель напряжения, на базе резисторов R2 и R5. Выходной первого ОУ непосредственно связан с инвертирующим входом второго LM741 через сопротивление R4. Этот второй ОУ вместе с R4 и C1 образуют схему интегратора. Его неинвертирующий вход заземлен. На оба ОУ подаются напряжения питания +Vcc и –Vee, как обычно на седьмой и четвертый выводы.

Работает схема следующим образом. Предположим, что первоначально на выходе U1 имеется +Vcc. Тогда емкость С2 начинает заряжаться через резистор R1. В определенный момент времени напряжение на С2 превысит уровень на неинвертирующем входе, что расчитывается по формуле ниже:

V 1 = (R 2 / (R 2 +R 5))× V o = (10 / 20)× V o = 0.5× V o

Выходной сигнал V 1 станет –Vee. Так, конденсатор начинает разряжаться через резистор R1. Когда напряжение на емкости станет меньше напряжения, определяемого формулой, выходной сигнал снова будет + Vcc. Таким образом, цикл повторяется, и благодаря этому генерируются импульсы прямоугольной формы с периодом времени, определяемым RC-цепочкой, состоящей из сопротивления R1 и конденсатора C2. Эти образования прямоугольной формы также являются входными сигналами для схемы интегратора, который преобразует их в треугольную форму. Когда выход ОУ U1 равен +Vcc, емкость С1 заряжается до максимального уровня и дает положительный, восходящий склон треугольника на выходе ОУ U2. И, соответственно, если на выходе первого ОУ имеется –Vee, то будет формироваться отрицательный, нисходящий склон. Т.е, мы получаем треугольную волну на выходе второго ОУ.

Генератор импульсов на первой схеме построен на микросхеме TL494 отлично подходит для наладки любых электронных схем. Особенность этой схемы заключается в том, что амплитуда выходных импульсов может быть равна напряжению питания схемы, а микросхема способна работать вплоть до 41 В, ведь не просто так ее можно найти в блоках питания персональных компьютеров.


Разводку печатной платы вы можете скачать по ссылке выше.

Частоту следования импульсов можно изменят переключателем S2 и переменным резистором RV1, для регулировки скважности используется резистор RV2. Переключатель SA1 предназначен для изменения режимы работы генератора с синфазного на противофазный. Резистор R3 должен перекрывать диапазон частот, а диапазон регулировки скважности регулируется подбором R1, R2

Конденсаторы С1-4 от 1000 пФ до 10 мкФ. Транзисторы любые высокочастотные КТ972

Подборка схем и конструкций генераторов прямоугольных импульсов. Амплитуда генерируемого сигнала в таких генераторах очень стабильна и близка к напряжению питания. Но форма колебаний весьма далека от синусоидальной - сигнал получается импульсным, причем длительность импульсов и пауз между ними легко регулируется. Импульсам легко придать вид меандра, когда длительность импульса равна длительности паузы между ними

Формирует мощные короткие одиночные импульсы, которые устанавливают на входе или выходе любого цифрового элемента логический уровень, противоположный имеющемуся. Длительность импульса выбрана такой, чтобы не вывести из строя элемент, выход которого подключен к испытуемому входу. Это дает возможность не нарушать электрической связи испытуемого элемента с остальными.

Техника измерений

Генератор на NE555 с регулировкой частоты

К слову, микроконтроллер NE555 был разработан еще в 1971 году и настолько удачно, что его применяют даже в настоящее время. Существует множество аналогов, более функциональных моделей, модификаций и т.п., но оригинальный чип по-прежнему актуален.

Описание NE555

Микросхема представляет собой интегральный таймер. В настоящее время выпускается преимущественно в DIP-корпусах (ранее были версии в круглых металлических).

Функциональная схема выглядит следующим образом.

Рис. 1. Функциональная схема

Может работать в одном из двух основных режимов:

1.Мультивибратор (моностабильный);

2.Генератор импульсов.

Нас интересует только последний вариант.

Простой генератор на NE555

Наиболее простая схема представлена ниже.

Рис. 2. Схема генератора на NE555

Рис. 3. График выходного напряжения

Таким образом, расчет частоты колебаний (с периодом t на графике) будет выполняться на основе следующей формулы:

f = 1 / (0,693*С*(R1 + 2*R2)),

соответственно формула полного периода:

t = 0,693*С*(R1 + 2*R2).

Время импульса (t1) считается так:

t1 = 0,693 * (R1 + R2) * C,

тогда промежуток между импульсами (t2) – так:

t2 = 0,693 * R * 2 * C

Изменяя значения резисторов и конденсатора, можно получить требуемую частоту с заданным временем длительности импульсов и паузы между ними.

Регулируемый генератор частоты на NE555

Самый простой вариант – это переработка нерегулируемой схемы генератора.

Рис. 4. Схема генератора

Здесь второй резистор заменяется на два регулируемых включенных со встречно-параллельными диодами.

Другой вариант регулируемого генератора на таймере 555.

Рис. 5. Схема регулируемого генератора на таймере 555

Здесь положением переключателя (за счет включения нужного конденсатора) можно изменить регулируемый диапазон частот:

  • 3-153 Гц;
  • 437-21000 Гц;
  • 1,9-95 кГц.

Включатель перед диодом D1 увеличивает скважность, его можно даже не использовать в схеме (при его работе может незначительно изменяться частотный диапазон).

Транзистор лучше всего смонтировать не теплоотводе (можно даже на небольшом).

Скважность и частоту регулируют переменные резисторы R3 и R2.

Еще одна вариация с регулированием.

Рис. 6. Схема регулируемого генератора

IC1 – это таймер NE555N.

Транзистор – высоковольтный полевой (чтоб свести к минимуму эффект нагрева даже при высоких токах).

Чуть более сложная схема, работающая с большим числом диапазонов регулирования.

Рис. 7. Схема, работающая с большим числом диапазонов регулирования

Все детали уже обозначены на схеме. Регулируется за счет включения одного из диапазонов (на конденсаторах C1-C5) и потенциометрами P1 (отвечает за частоту), P4 (отвечает за амплитуду).

Схема требует двуполярного питания!


Дата публикации: 21.02.2018

Мнения читателей
  • Valentin / 16.06.2019 - 18:53
    Под Рис.3 в формуле для длительности паузы между импульсами следует убрать лишнюю звездочку и привести формулу к виду t2=0,693×R2×C
  • shadi abusalim / 03.09.2018 - 13:55
    Пожалуйста, помогите вам использовать электронную схему, используя встроенный 555 Чтобы отрегулировать ширину импульса и управлять им, чтобы добавить управление в вспышку, тушите и зажигайте лампу в том же круге Частота цепи должна составлять до 500 кГц Существует круг, расположенный на сайте, похожий, но слегка колеблется mail [email protected] The current and frequency are controlled by the variable resistors R3 and R2. Another variation with regulation. Fig. 6. Scheme of the regulated generator

В радиолюбительской практике часто возникает потребность в настройке различных преобразовательных узлов схем, особенно если дело касается изобретательской деятельности, когда схема зарождается в голове. В такие моменты будет как нельзя кстати источник управляющего сигнала.

Представляю Вашему вниманию генератор сигнала прямоугольной формы .

Характеристики

Питание: 10 ÷ 15 В постоянного тока.

Три режима генерации:

1 – симметричный (меандр), дискретное переключение диапазонов генерируемых частот, плавная регулировка частоты внутри диапазона;

2 – независимый, дискретное переключение диапазонов генерируемых частот, плавная раздельная регулировка длительности импульса и паузы между импульсами внутри диапазона;

3 – широтно-импульсная модуляция (ШИМ), дискретный выбор частоты переключателем диапазонов, плавная регулировка скважности импульсов.

Два раздельных канала – прямой и инверсный.

Раздельная регулировка уровня выходного сигнала каналов от 0 В до значения напряжения источника питания при подключении высокоомной нагрузки, и до половины напряжения источника питания при подключении нагрузки с входным сопротивлением 50 Ом.

Выходное сопротивление канала примерно 50 Ом.

Базовые схемы

Для построения генератора за основу взята схема автогенератора на двух логических инверторах (рисунок 1). Принцип её работы основан на периодической перезарядке конденсатора. Момент переключения состояния схемы определяется степенью заряда конденсатора C1. Процесс перезаряда происходит через резистор R1. Чем больше ёмкость C1 и сопротивление R1, тем дольше происходит процесс заряда конденсатора, и тем больше длительность периодов переключения состояния схемы. И наоборот.

Для построения схемы генераторов в качестве логических элементов была взята микросхема с четырьмя элементами 2И-НЕ – HEF4011BP . Базовая схема, показанная выше, позволяет получать на выходе Q прямоугольный сигнал фиксированной частоты и скважности 50% (меандр). Для расширения возможностей устройства было принято решение объединить в нём три различных схемы, реализуемых на тех же двух логических инверторах.

Схема генератора меандра

Схема генератора меандра изображена на рисунке 2-а. Времязадающая ёмкость схемы может изменяться от значения C1 до суммарного значения C1 и ёмкости, подключаемой перемычкой П. Это позволяет изменять диапазон частот генерируемого сигнала.

Резистор R1 позволяет плавно изменять ток заряда (перезаряда) ёмкости. Резистор R2 является токоограничивающим, для исключения перегрузки выходного канала логического элемента DD1.1 в случае, когда ползунок резистора R2 находится в крайнем верхнем положение и его сопротивление приближено к нулю. Поскольку заряд и перезаряд конденсатора производится по одной цепочке с неизменными параметрами, длительности импульса и паузы между ними равны. Такой сигнал имеет симметричную прямоугольную форму и называется меандр. Регулировкой R1 изменяется только частота генерируемого сигнала в определённом диапазоне, заданном времязадающей ёмкостью.

Схема генератора прямоугольных импульсов с раздельной регулировкой длительности импульса и паузы

На рисунке 2-б цепь заряда и цепь перезаряда разделены диодами VD1 и VD2. Если импульс формируется во время заряда времязадающей ёмкости, его длительность характеризуется сопротивлением цепочки VD1-R2-R1. Длительность паузы между импульсами при обратном перезаряде ёмкости характеризуется сопротивлением цепи R1-R3-VD2. Так, изменяя положение ползунков резисторов R2 и R3 можно плавно раздельно задавать длительность импульса и паузы между ними.

Диапазон частот генерируемого сигнала, как и в первом случае, переключается перемычкой П.

Схема генератора с ШИМ

Схема на рисунке 2-в имеет аналогичное разделение цепей прямого и обратного заряда времязадающей ёмкости с той разницей, что переменные сопротивления являются плечами переменного резистора R2, которые имеют обратную зависимость параметров по отношению друг к другу. Т.е., при увеличении одного плеча резистора прямопропорционально уменьшается второе, а общая сума их сопротивлений постоянна. Таким образом, регулируя соотношение плеч резистора R2 можно плавно изменять соотношение длительности импульсов к длительности пауз между ими, а время периода следования импульсов будет оставаться неизменным. Этот способ регулировки позволяет реализовать функцию широтно- импульсной модуляции (ШИМ)

Частота генерируемого сигнала в данной схеме выбирается дискретно переключением перемычки П. При необходимости можно использовать несколько перемычек П для суммирования больших и малых значений ёмкостей, добиваясь более точной требуемой частоты генерации сигнала внутри всего диапазона.

Окончательная схема генератора

На рисунке 3 представлена схема генератора , в которой реализованы все три схемы, рассмотренные на рисунке 2. В основе генератора два логических инвертора на элементах DD1.1 и DD1.2. Выбор диапазона частот (частоты в режиме ШИМ) осуществляется переключением перемычки П.

Для сборки нужного варианта схемы генератора введены штыревые разъёмы, коммутируемые параллельными сборками перемычек, изображенных цветными линиями. Каждый цвет перемычек соответствует своей схеме соединений. Перемычки реализованы путём соединения пар контактов проволочками от шлейфа разъёма типа FC-10P A. Сами штыревые разъёмы расположены тремя группами по пять пар для удобства коммутации. Разъём-перемычки позволяет переключать режим генерации.

Элементы DD1.3 и DD1.4 выполняют роль инвертирующих повторителей и служат для развязки времязадающих и выходных цепей генератора для исключения их взаимовлияния. С выхода DD1.3 берётся инвертированный сигнал, с выхода DD1.4 – основной.

Резисторы R5 и R6 служат для регулировки уровня напряжения импульсов соответствующих каналов. Транзисторы VT1 и VT2 включены по схеме эмиттерного повторителя для усиления сигналов, снимаемых с ползунков резисторов R5 и R6 соответственно. Транзисторы VT3 и VT4 шунтируют выходные цепи своих каналов, подтягивая к минусу питания. Их роль важна при подаче сигнала генератора на нагрузку с наличием ёмкости, когда в бестоковую паузу необходим разряд этой ёмкости, как например при управлении полевыми транзисторами. Диоды VD5 и VD6 отделяют базовые цепи шунтирующих транзисторов от выхода генератора, исключая влияние ёмкостной нагрузки на работу этих транзисторов. Резисторы R9 и R10 необходимы для согласования выходов генератора с сопротивлением нагрузки 50 Ом, а также для ограничения максимального тока транзисторов выходных каскадов каналов.

Диод VD3 защищает схему от подключения питающего напряжения обратной полярности. Светодиод VD4 выполняет роль индикатора питания. Конденсатор C21 частично сглаживает пульсации при питании от нестабилизированного источника.

Особенности схемы

С целью уменьшения габаритов устройства для времязадающей ёмкости применены SMD конденсаторы C1-C20. При наименьшей ёмкости конденсатора C1=68 пФ генератор формирует сигнал частотой до 17÷500 кГц. При промежуточных значениях ёмкостей 3,3 нФ и 100 нФ генератор формирует сигналы в диапазонах частот 360÷20000 Гц и 6,25÷500 Гц соответственно. При наименьшей ёмкости С2=5,1 мкФ получается частота в диапазоне 0,2-10 Гц. Таким образом, при использовании всего четырёх конденсаторов можно перекрыть диапазонами частот интервал от 0,2 Гц до 500 кГц. Но при этом в режиме ШИМ будет доступна генерация сигнала всего четырёх значений частоты при использовании одной перемычки П. Поэтому, для улучшения характеристики генератора было принято решение ввести в схему 20 конденсаторов различной ёмкости с равномерным распределением значений по интервалам. Дополнительную точность установки частоты в режиме ШИМ можно получить, применяя несколько перемычек идентичных П, которые позволят корректировать частоту подключением емкостей меньших значений в сравнении с основной добавочной.

Питание схемы имеет некоторые ограничения. Не смотря на достаточно широкий диапазон напряжения питания микросхемы 3÷15 В, как показал опыт, при напряжении питания схемы ниже 9 В не происходит запуск генератора. При напряжении 9 В запуск не стабилен. Поэтому рекомендуется использовать источник питания 12÷15 В.

При напряжении питания 15 В, нагрузке сопротивлением 50 Ом подключенной к одному каналу генератора и максимальном выходном уровне сигнала, устройство потребляет не более 2,5 Вт мощности. При этом основная доля мощности рассеивается на нагрузке и согласующем выходном резисторе R9 (R10).

Не рекомендуется включать генератор на короткозамкнутую нагрузку, поскольку выходной транзистор при этом работает в предельном режиме. Это касается и тестирования схем с биполярными ключами, не имеющими в цепи базы ограничивающего резистора. В таких случаях рекомендуется уровень выходного сигнала снижать как минимум за половину оборота ручки резистора, а потом по мере необходимости добавлять.

В моём случае для варьирования частотных диапазонов генерации я использовал следующий ряд номиналов конденсаторов:
С1 - 68 пФ;
С2 - 100 пФ;
С3 - 220 пФ;
С4 - 330 пФ;
С5 - 680 пФ;
С6 - 1 нФ;
С7 - 2,2 нФ;
С8 - 3,3 нФ;
С9 - 9,1 нФ;
С10 - 22 нФ;
С11 - 33 нФ;
С12 - 47 нФ;
С13 - 82 нФ;
С14 - 100 нФ;
С15 - 220 нФ;
С16 - 330 нФ;
С17 - 510 нФ;
С18 - 1 мкФ;
С19 - 2,4 мкФ;
С20 - 5,1 мкФ.

Вы из каких либо соображений можете применить номиналы, отличные от указанных. Единственное ограничение, минимальная ёмкость не должна быть меньше 68 пФ, иначе генератор на этой ёмкости может просто не запуститься, либо начать автогенерацию в ненасыщающемся режиме, при котором форма сигнала не прямоугольная, а искажённый прямоугольник, стремящийся к синусоиде.

Красным цветом выделены номиналы, при которых перекрывается весь диапазон генерируемых частот.

Фотогалерея

Здесь показана укладка проводов-перемычек в разъём, собранный разъём и уже готовый разъём-перемычка с обрезанными проводниками.


На этих фото генератор с разных ракурсов

А это со стороны печатки. Качество дорожек получилось просто отвратительное, поэтому пришлось налудить так много олова.

А это, собственно, перемычка переключения диапазонов и перемычка переключения режимов. Чуть правее выдны гнёзда и штыри, которые эти перемычки коммутируют.

Печатную плату каждый может сделать под детали, которые есть в наличии. Кого интересует печатка моего варианта генератора, можете скачать архив по ссылке ниже. Там есть печатка в формате страници PDF, а так же в формате PCB для P-CAD версии не ниже 2010. Схема так же есть в архиве, можете не пытаться сохранять её со страницы, просто скачайте архив.



Вам также будет интересно:

Синдром дырявого кишечника - Candida и аутоиммунные заболевания Аутоиммунные заболевания жкт у детей
Иммунная система нашего организма – это сложная сеть специальных органов и клеток, которые...
Как научить своего ребенка писать изложение
Работа ОГЭ по русскому языку начинается с написания сжатого изложения . Существуют разные...
Сапегин александр павлович
Текущая страница: 1 (всего у книги 34 страниц) [доступный отрывок для чтения: 19...
Необыкновенные явления Природы
Удивительные вещи порой создает природа. Феномены природных явлений удивляют и восхищают. И...
К чему снятся Уши во сне, сонник видеть Уши что означает
Или озадачит. Если же во сне большие уши будут принадлежать вам и вы увидите их в зеркало...