Литературные премии мира

Венгерские оккупанты в ссср: главные «отморозки» на великой отечественной Партизан генерал орленко

Петух в славянской мифологии

Именительный представления Именительный темы примеры

Тест профтбор Тест смогу ли я стать военным

Объявление на взнос наличными - способ перевода средств на счёт

Торт «Птичье молоко» в домашних условиях, пошаговый рецепт с фото Торт бисквит птичье молоко

Салат с моцареллой и помидорами - классика вкуса Салат с моцареллой маслинами и черри

Церковная реформа XVII века и раскол

К чему снится магия и колдовство?

Сфу рассказал о бонусах для абитуриентов Сфу список специальностей проходной балл

Где можно получить дистанционное высшее образование

Национальная кухня украины

К чему снятся Уши во сне, сонник видеть Уши что означает

Лечение насморка у будущих мам пиносолом Пиносол от насморка при беременности

Индикатор напряжения на светодиодах для автомобиля. Автомобильный индикатор

Я редко пользуюсь своим автомобилем. В сущности, не понятно зачем он мне. Ну и в результате аккумулятор вечно “садится”. И каждый раз мне приходится присоединить запасной аккумулятор, а подсевший ставить на зарядку. Это вечно болезненная проблема – не дать аккумулятору на машине разрядиться ниже нормы.

Поэтому я собрал эту схему “Индикатор напряжения аккумулятора автомобиля”, которую давно нашел в интернете и сохранил у себя.

Но немного изменил ее, и вместо 10 отдельных светодиодов, которые были в оригинальной схеме, использовал 10-сегментный светодиодный индикатор, т.к. это занимает меньше места.

Необходимые радиодетали:

1.подстроечный резистор 5к – 2шт.
2.микросхема LM3914
3.10-сегментная светодиодная планка (я использовал Kingbight DC-763HWA)
4.резистор R1 4.7к
5.резистор R2 1.2 к
6.Для наладки понадобится вольтметр и регулируемый блок питания от 10 до15 Вольт.

Вот печатная плата устройства.

Как можно заметить на фото, я отрезал один вывод у правого подстроечного резистора.

После монтажа деталей на плате требуется настройка устройства. Подайте напряжение 10.5 Вольт и отрегулируйте правый подстроечник, так чтобы загорелась первая полоска на 10-сегментном индикаторе.

Подайте напряжение 15 Вольт и отрегулируйте, так чтобы загорелась последняя полоска на 10-сегментном индикаторе. И помните всегда должна светиться только одна полоска. Закрепите устройство в удобном месте.

Теперь у вас есть 10-сегментный индикатор показывающий напряжение батареи с шагом в 0.5 Вольт.

Индикатор напряжения бортовой сети автомобиля , приведенный в данной статье, предназначен для визуального контроля за напряжением бортовой сети легкового автомобиля. Всем известно, что нормальное значение напряжения, имеющееся в бортовой сети автомобиля, оказывает положительное влияние на срок службы аккумулятора (АКБ) особенно в зимний период. Поэтому в сильные морозы, для запуска двигателя автомобиля, желательно воспользоваться .

Оно должно быть таким, чтобы при хорошо и заведенном двигателе, генератора хватало бы на всех энергопотребителей. И в тоже время его не должно быть слишком много, так как это может привести к перезаряду АКБ.

Описание индикатора напряжения бортовой сети автомобиля

Оптимальным напряжением бортовой сети автомобиля с аккумулятором 12В принято считать диапазон от 11,7В до 14В. Выход за пределы этих границ крайне нежелателен, поскольку при снижении ниже 11,7В происходит резкий разряд АКБ, а при превышении 14В начинается его перезаряд. Вести контроль бортовой сети автомобиля можно с помощью простого индикатора состоящего из двух компараторов и трех светодиодов , схема которого приведена ниже.

Схема индикатора очень простая, суть работы ее состоит в том, что текущее напряжение, снятое с делителя, построенного на резисторах R2, R3, R4 сравнивается с опорным, построенного на стабилитроне VD1 (5,6В). Оптимальное напряжение показывает зеленый светодиод, состояние свыше 14В сигнализирует красный, и соответственно желтый показывает ниже 11,7В. Примененный в данной схеме ОУ

П. Алексеев

Контроль напряжения бортовой электросети автомобиля можно осуществить, установив в автомобиле вольтметр для оценки заряженности аккумуляторной батареи, работы генератора и реле-регулятора напряжения. При этом значимость его на автомобилях, имеющих амперметр («Москвич» всех типов), не ниже по сравнению с автомобилями без амперметра («Жигули» всех моделей). Объясняется это тем,- что амперметр показывает, заряжается ли аккумуляторная батарея или нет, идет ли расход энергии с генератора или батареи, но он не позволяет однозначно судить о состоянии батареи: заряжена она полностью (поэтому и нет тока зарядки), разряжена, но зарядки нет вследствие низкого напряжения генератора (нужна подстройка реле-регулятора) и т. д. Таким образом, вольтметр, не снижая достоинств амперметра, отдельно, а лучше в комплексе с ним, позволит поэтапно наблюдать за состоянием бортовой сети автомобиля до пуска двигателя, при работе на холостых, средних или повышенных оборотах.

Поскольку контролируемое напряжение бортовой сети может быть в пределах 12... 15 В (или 10... 15 В, в зависимости от необходимых пределов контроля), шкала стрелочного вольтметра для лучшей наглядности должна быть растянутой в этих пределах, иначе информативность прибора будет невелика. Кроме того, нужно учесть и сложность размещения (или встраивания в панель) этого прибора в салоне автомобиля.

Как показывает опыт, вполне достаточной информативностью обладает вольтметр-индикатор, выполненный на базе миниатюрных (сигнальных) ламп накаливания, прикрытых цветными светофильтрами.

Принципиальная схема такого прибора приведена на рис. 1.

Выбор диапазона контролируемого напряжения и деление его на участки зависит от желания конструктора. Автором был принят диапазон контролируемого напряжения 12 В и выше (практически до 15...16 В), с разбивкой его на участки, как показано на рис. 2.


Рис. 2. Схема участков диапазона контролируемого напряжения

Участкам «Нет зарядки», «Норм, ток зарядки» и «Очень большой ток зарядки» соответствует горение ламп накаливания HL1, HL2 и HL3. Эти лампы светятся при напряжениях в бортовой сети автомобиля 12...13,7 В, 13,2...14,6 В, 14,2 В и выше. В зонах перекрытия «Малый ток зарядки» и «Большой ток зарядки» светятся по две лампы, указывая на то, что напряжение в сети автомобиля находится в том или ином крайнем значении относительно нормального. Лампа HL1 имеет оранжевый фильтр, HL2 - зеленый, HL3 - красный. Они расположены на лицевой панели прибора слева направо, обеспечивая удобство наблюдения за напряжением и его изменениями.

Вольтметр-индикатор состоит из трех измерительных каскадов, каждый из которых соответствует одному из участков напряжения и управляет «своей» лампой. Измерительные каскады собраны по идентичным схемам (крайний правый для участка «14,2 В и больше» не полный) и отличаются только пороговыми напряжениями срабатывания.

Прибор работает следующим образом. При включении замка зажигания питание бортовой сети поступает на шину «+12 В», и если напряжение аккумуляторной батареи равно 12 В или выше, то ток, протекающий через открывшийся стабилитрон VD1 и резисторы R3 и R4, откроет транзистор VT1. При этом лампа HL1, включенная в цепь коллектора этого транзистора, получит питание и будет светиться. Если напряжение батареи ниже 12 В (она разряжена), лампа HL1 светиться не будет. Она погаснет и при пуске двигателя автомобиля, если при работе стартера напряжение аккумуляторной батареи станет ниже 12 В (обычно так и бывает). Другие лампы вольтметра-индикатора при этом не светятся потому, что напряжение открывания остальных стабилитронов больше напряжения открывания стабилитрона VD1.

При повышении напряжения бортовой сети до 13,2 Б срабатывает второй измерительный каскад на стабилитроне VD3 и транзисторе VT3 и загорается лампа HL2 (лампа HL1 продолжает гореть). Дальнейшее повышение напряжения до 13,7 В приводит к открыванию стабилитрона VD2 и транзистора VT2 первого каскада, который шунтирует эмиттерный переход транзистора VT1, обеспечивая его закрывание и погасание лампы HL1. На лицевой панели вольтметра-индикатора в это время светится только лампа HL2.

При напряжении 14,2 В откроются стабилитроны VD5, VD6 и транзистор VT5 третьего измерительного каскада. Теперь загорится лампа HL3 (лампа HL2 продолжает гореть). Если напряжение бортовой сети достигнет 14,6 В, откроются стабилитрон VD4 и транзистор VT4 второго измерительного каскада, что приведет к закрыванию транзистора VT3 и погасанию лампы HL2. На панели прибора остается светящейся только лампа HL3, которая будет гореть и при дальнейшем росте напряжения.

При уменьшении напряжения бортовой сети, например с 15 до 12 В, порядок переключения сигнальных ламп будет обратным.

Резисторы Rl, R7 и R13 предохраняют транзисторы КТ608Б от перегрузки по коллекторному току при включении ламп HL1 - HL3, когда сопротивление их холодных нитей накала составляет 10...20 Ом. Резисторы R2, R8 и R14 шунтируют транзисторы VT1, VT3 и VT5, уменьшая протекающий через них ток в моменты переключения, когда на них рассеивается максимальная мощность. Шунтирующие резисторы позволяют транзисторам КТ608Б работать без теплоотводов, начальный же ток ламп (40...50 мА) подогревает нить накала очень слабо и не мешает наблюдению.

В качестве индикаторов HL1 - HL3 в приборе можно использовать лампы накаливания МН13-0,18 (13,5 Вх0,18 А) или автомобильные 12 B X 1 Св, яркость свечения которых достаточна для наблюдения в любых условиях.

Напряжение стабилизации стабилитрона VD1 должно быть 11,2 В, VD2- 11,5 В, VD3 - 12,2 В, VD4 - 12,5 В. Суммарное напряжение стабилизации стабилитронов VD5 и VD6 необходимо подобрать равным 13,2 В.

При отсутствии возможности отбора стабилитронов требуемые пороги срабатывания измерительных каскадов можно получить изменением номиналов резисторов R3, R5, R11, R15 или R4, R6, R10, R12, R16, а также подбором одновременно тех и других. Для снижения порога срабатывания транзисторов нужно уменьшать сопротивления резисторов R3, R5, R9, Rll, R15 или увеличивать - R4, R6, R10, R12, R16 и наоборот. Практически уже при небольших изменениях сопротивлений этих резисторов удается изменить пороги срабатывания каскадов на 0,2...0,8 В.

Статический коэффициент передачи тока h21э транзисторов КТ608 (VT1, VT3, VT5) должен быть не менее 200. При меньшем коэффициенте h21э процесс открывания и закрывания этих транзисторов будет затягиваться до 0,3...0,4 В изменения входного напряжения, что нежелательно с точки зрения наглядности («вялое» переключение ламп) и точности измерения бортового напряжения.

К таким же результатам приводит и включение диодов в прямом направлении последовательно со стабилитронами (для облегчения подбора напряжения срабатывания измерительных каскадов). Это объясняется тем, что при малых базовых токах транзисторов диоды (кремниевые и германиевые) работают на плавно изгибающемся начальном участке прямой ветви вольтамперной характеристики, где рост тока при увеличении напряжения сравнительно невелик.

Коэффициент h21э транзисторов КТ312Б (VT2, VT4) или заменяющих их транзисторов КТ315 может быть 50...80. В случае использования транзисторов серии КТ312 с коэффициентом h21э более 100... 150 в моменты переключения измерительных каскадов может возникнуть колебательный процесс, при котором лампы HL1 или HL2 будут мигать с частотой 3...5 Гц. Устранить это явление можно включением между базой и коллектором транзисторов VT2, VT4 конденсатора емкостью 0,01 мкФ. Конденсаторами таких же емкостей можно зашунтировать участки эмиттер-коллектор транзисторов VT1, VT3, VT5. Но делать это необязательно (даже лучше не делать), поскольку самовозбуждение возникает при незначительном изменении напряжения бортовой сети (0,03...0,05 В) и, кроме того, оно очень хорошо информирует о том, что напряжение сети находится на границе, перехода с одного измерительного участка на другой.

Работоспособность вольтметра-индикатора и точность измерения границ интервалов проверяют по схеме рис. 3, используя регулируемый источник постоянного напряжения (от 10 до 16 В) с допустимым током нагрузки 300 мА и вольтметр.


Медленно повышая напряжение от 10 до 15...16 В и наблюдая за загоранием и погасанием ламп, проверяют границы участков работы индикаторов. В случае несоответствия этих границ (см. рис. 2), что может быть в пределах 0,2...0,5 В из-за разброса параметров стабилитронов и транзисторов, или при желании изменения этих границ стабилитроны заменяют на другие, имеющие соответствующее напряжение стабилизации.

Конструкция прибора произвольная. Автор, например, смонтировал его в пластмассовой коробке размерами 35x75x90 мм. На лицевой стенке (35X75 мм) размещены три фонаря (с оранжевым, зеленым и красным светофильтрами). Коробка установлена (предварительно подогнана по месту) под приборной доской (левее рулевой колонки) автомобиля «Москвич-408».

Неплохо выглядит конструкция, если на лицевой стенке коробки вырезать щель (6x50 мм) и прикрыть ее полоской матового стекла, обрамленного декоративной рамкой. Под стеклом устанавливают плоские цветные фильтры и индикаторные лампы HL1 - HL3. Для устранения подсветки лампами «не своих» цветофильтров в соответствующих местах щели следует укрепить перегородки.

Вольтметр-индикатор с неменьшим успехом может быть применен на грузовых автомобилях любых типов и автобусах. При напряжении бортовой сети автомобиля 24 В в прибор необходимо внести следующие изменения:

в качестве индикаторов НL1 - HL3 установить лампы МН26-0,12 (26 В Х 0,12 А) или МН36-0,12 (36 В Х 0.12 А);

стабилитроны серии Д814 заменить стабилитронами КС524Г и КС527А (возможно последовательное включение других стабилитронов);

сопротивление резисторов Rl, R7 и R13 увеличить до 100... 120 Ом, а резисторы R2, R8 и R14 исключить.

В 24-вольтовом вольтметре-индикаторе могут быть использованы транзисторы КТ608Б и КТ312Б (КТ315Г, Е, В, Д).

Источник регулируемого напряжения (см. рис. 3) должен иметь пределы регулировки 20...30 В. Разбивку диапазона контроля напряжения (см. рис. 2) производят на основе технических условий эксплуатации аккумуляторных батарей и электрооборудования автомобилей.

В любой технике в качестве отображения режимов работы используют светодиоды. Причины очевидны – низкая стоимость, сверхмалое энергопотребление, высокая надёжность. Поскольку схемы индикаторов очень просты, нет необходимости в покупке фабричных изделий.

Из обилия схем, для изготовления указателя напряжения на светодиодах своими руками, можно подобрать наиболее оптимальный вариант. Индикатор можно собрать за пару минут из самых распространённых радиоэлементов.

Все подобные схемы по назначению делят на индикаторы напряжения и индикаторы тока.

Работа с сетью 220В

Рассмотрим простейший вариант – проверка фазы.

Эта схема представляет собой световой индикатор тока, которым оснащают некоторые отвёртки. Такое устройство даже не требует внешнего питания, поскольку разность потенциала между фазовым проводом и воздухом или рукой достаточна для свечения диода.

Для отображения сетевого напряжения, например, проверки наличия тока в разъёме розетки, схема ещё проще.

Простейший индикатор тока на светодиодах 220В собирается на ёмкостном сопротивлении для ограничения тока светодиода и диода для защиты от обратной полуволны.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор для микросхем (логический пробник)

Если возникает необходимость проверить работоспособность микросхемы, поможет в этом простейший пробник с тремя устойчивыми состояниями. При отсутствии сигнала (обрыв цепи) диоды не горят. При наличии логического ноля на контакте возникает напряжение около 0,5 В, которое открывает транзистор Т1, при логической единице (около 2,4В) открывается транзистор Т2.

Такая селективность достигается, благодаря различным параметрам используемых транзисторов. У КТ315Б напряжение открытия 0,4-0,5В, у КТ203Б – 1В. При необходимости можно заменить транзисторы другими с аналогичными параметрами.

Прибор подключается к бортовой сети автомобиля и предназначен для оперативного определения ее состояния по четырем светодиодам. Которые индицируют следующие напряжения:

Если перемигиваются два соседних светодиода, то напряжение находится на границах указанных интервалов. Взглянем на схему устройства, которое собрано всего на одной микросхеме:

Перед нами четыре операционных усилителя D1.1 – D1.4, включенных по схеме компараторов. Каждый из них с помощью резистивных делителей настроен на свой диапазон и управляет своим светодиодом. Контролируемое напряжение подается на инверсные входы усилителей, на прямых – образцовое напряжение, полученное с помощью простейшего стабилизатора (VD1, R7, С1) и резистивных делителей R1 – R6. Благодаря диодам VD2 — VD4 зажигание каждого следующего светодиода (снизу вверх) приводит к выключению предыдущего. Таким образом, в любой момент времени светится только один светодиод или не горит ни одного (напряжение ниже 11.7 В). Дроссель Т1 и конденсаторы С2, С3 образуют фильтр, устраняющий импульсную помеху по цепям питания устройства.

В устройстве можно использовать любые постоянные резисторы, которые желательно подобрать как можно точнее. Поскольку в стандартном ряду номинала 500 Ом нет, резистор R4 собран из двух резисторов по 1 кОм, включенных параллельно. Подстроечный резистор R5 – многооборотный, к примеру СП3-19а. Конденсаторы С2, С3 – К73-9 на рабочее напряжение 250 В, С1 – типа К10-17. На месте VD1 может работать любой стабилитрон типа Д818, но наиболее термостабильны с буквами Е, Д и Г. В качестве светодиодов можно использовать любые индикаторные с возможно меньшим током свечения (идеально — серия КИП). Диоды VD2 — VD4 – любые импульсные.

Дроссель выполнен на ферритовом кольце К10х6х3 из феррита 2000НМ1 и содержит две обмотки по 30 витков каждая, выполненные проводом ПЭЛШО-0.12. При включении дросселя очень важно включить обмотки согласованно (начало обмоток обозначено точками), иначе толку от него в качестве фильтра не будет. Налаживание прибора сводится к регулировке резистора R5, которым выставляют нижний порог индикации (ниже 11.7 В, HL4 только что погас) и, если это необходимо, подбору R1 по верхнему порогу (выше 14.8 В, HL1 только что загорелся). Все промежуточные диапазоны будут установлены автоматически. Ток потребления устройства должен оказаться в пределах 20 — 25 мА.



Вам также будет интересно:

Сонник развалины, руины Сон развалины здания
Сонник XXI века К чему снятся Развалины, руины и что означает: Развалины, руины - Видеть...
Салат из редьки с жареным луком (ТТК3232)
Калорийность: Не указана Время приготовления: Не указано Идея такого салата состоит в...
Когда добыча съедает охотника
Инцидент произошел 6 июня вечером на улице Вавиловых в Калиниском районе Санкт-Петербурга....
Гороскоп на март водолей тигр
У водолеев женщин в 2019 году могут возникнуть проблемы с документами. Гороскоп рекомендует...
Как ИП может оформить ипотеку?
Индивидуальные предприниматели (ИП) нередко сталкиваются с проблемами в получении...