Судовой упорный подшипник гребного вала. Гребной вал и его работа, механизмы линии вала катера, как устроено спортивное судно, ремонт катера, ремонт водного судна, как сделать водное судно в гараже, водный спорт

Причины поломок вала. Гребные или промежуточные валы ломаются относительно редко, гораздо чаще происходит их изгиб.

Естественно, что лопнувший вал не ремонтируют, а заменяют, но во всех случаях необходимо проанализировать характер поломки и выявить ее причину. Важно, чтобы поломка по той же причине не повторилась при дальнейшей эксплуатации установки с новым валом.

Если вал сломался при ударе о подводное препятствие и при этом его скрутило, причем угол закрутки достигает величины φ° = (0,3-0,5)L/d, где L - длина, a d - диаметр вала (см), то причина поломки или в отсутствии предохранительной муфты или в неправильном выборе ее срезного элемента - он слишком прочен.

Может произойти поломка вала без заметного скручивания, а иногда и без видимых внешних причин, причем излом проходит под углом примерно 45° к оси вала и имеет зернистую структуру. В таких случаях причиной излома, как правило, является трещина, проходящая в районе шпоночных пазов или уступов.

Возникновение же трещин объясняется действием усталостных напряжений, появляющихся, когда вал передает помимо основного постоянного крутящего момента от двигателя к винту еще какие-то дополнительные моменты, периодически меняющие направление.

Такие знакопеременные нагрузки возникают, например, из-за неравномерной работы двигателя (чем меньше число цилиндров, тем неравномерность больше) или перебоев в работе одного из цилиндров;

Из-за неравномерного износа или низкого качества изготовления зубчатых передач;

Из-за неправильной установки карданных шарниров;

Из-за появления сил, периодически действующих на каждую из лопастей при пересечении ею следа от кронштейна или дейдвуда либо при прохождении вблизи днища и у кронштейна;

Из-за плохой центровки или изгиба вала.

При правильно выполненной установке относительно корпуса катера и его выступающих частей и правильной установке карданных валов дополнительные напряжения, появляющиеся в валах от знакопеременных нагрузок, как правило, невелики и не могут служить причиной поломки. Поломка вала в этом случае (особенно если диаметр вала выбран минимально допустимым) может произойти только при возникновении резонансных крутильных колебаний. В том случае, когда собственная частота колебаний системы двигатель - вал - винт совпадает с частотами знакопеременных нагрузок, напряжения в валах и амплитуда их колебаний резко увеличивается, возникает резонанс. Внешними признаками возникновения крутильных резонансных колебаний являются: увеличение шумности; появление металлических стуков в шлицевых и шпоночных соединениях, особенно при наличии у них люфтов; усиление шума в зубчатом зацеплении.

В любительских условиях для предохранения валов от поломок из-за возникновения крутильных колебаний целесообразно увеличивать диаметры шеек валов в местах крепления муфт и винта, т. е. усиливать те места, где чаще всего возникают усталостные разрушения. Очень полезна установка упругих муфт (см. «КЯ» № 66), особенно на промежуточном валу. Целесообразно также использовать штатное сцепление автомобильных двигателей, которое оснащено эффективным упругим гасителем крутильных колебаний. При монтаже гребного винта расстояния до днища корпуса катера или дейдвуда и кронштейнами следует делать возможно большими.

При эксплуатации катера следует избегать даже кратковременной работы двигателя на больших нагрузках при перебоях в одном или нескольких его цилиндрах, с погнутым валом либо винтом, так как при этом амплитуда крутильных колебаний резко увеличивается.

Правка вала. Правку погнутых гребных или промежуточных валов лучше всего производить в токарном станке (рис. 1) или в простейшем приспособлении (рис. 2).

1 - индикатор; 2 - брусок (медь, алюминий).

Вынуть гребной вал для проверки и ремонта во многих случаях удается на плаву, если, конечно, не погнут кронштейн опорного подшипника. Для этого обычно сначала снимается перо руля, затем муфта (или полумуфта) отсоединяется от редуктора, вал сдвигается до упора в корпус сальника дейдвуда, муфта спрессовывается с конца вала и вынимается шпонка. После этого на конец вала и корпус сальника надевается резиновая перчатка (мешок из прорезиненной ткани, два-три полиэтиленовых пакета), которая плотно приматывается изолентой к корпусу сальника. Теперь вал с гребным винтом может быть вынут в корму, причем дейдвуд оказывается герметично закрытым. Эту операцию лучше проводить на мелком месте или с низких мостков.

Вынутый вал с винтом устанавливается в центрах токарного станка или на призмы приспособления, которые должны располагаться в районе заднего опорного подшипника и шейки муфты, крепящей его к реверс-редуктору.

При правке вала на токарном станке измерение его биения лучше всего производить при помощи индикатора 1 (см. рис. 1), укрепляя его на салазках продольного суппорта. Можно определить биение и по нониусу поперечного суппорта, последовательно подводя зажатый в резцедержатель брусок 2.

Часто концы валов имеют резьбовые шейки для крепления гребного винта и муфты, которые могут быть погнуты при затягивании гайки. Следует иметь в виду, что нас интересует биение вала относительно его опорных шеек, а не центровых отверстий, расположенных в резьбовых концах. Поэтому биение, прежде всего, необходимо проверить в районе шеек заднего опорного подшипника А и фланца полумуфты В. При этом биение опорных шеек более 0,2 мм указывает на чрезмерный прогиб резьбовых концов вала.

Править этот прогиб нужно, не снимая вал со станка, упором бруска 2 в шейки. При этом перемещение суппорта на первом этапе задается равным прогибу шеек Апр max, который равен половине биения. Далее вновь проверяется биение, определяется новое значение прогиба, и последующее перемещение суппорта задается большим на величину этого нового прогиба. Операция повторяется до тех пор, пока биение не уменьшится до 0,1-0,2 мм.

В тех случаях, когда биение шейки А связано в основном с сильным изгибом самого вала, производится первоначальная правка вала; далее при необходимости выполняется правка его резьбовых концов и только после этого - окончательная правка вала.

Перед окончательной правкой определяют местоположение и направление максимального прогиба вала. При правке вала следует иметь в виду, что из-за его относительно большой длины величина прогиба упругих деформаций может достигать величины 10-20 мм. Для того чтобы выправить вал, его необходимо деформировать на величину прогиба в области упругих деформаций (назовем его Δупр) плюс величина максимального прогиба вала Δпр max.

Именно из-за того, что Δпр max, как правило, намного меньше, чем Δупр, обычно не удается выправить вал при помощи ударов - рихтовкой: слабые удары не приводят к цели, а слишком сильные сразу же и намного прогибают вал в другую сторону. При помощи ударов удается выправить только короткие валы (L/d = 5-8), у которых Δупр меньше Δпр max.

Предварительную оценку величины прогиба вала в области упругих деформаций, т. е. до появления деформаций остаточных, можно произвести по формуле:

где k - коэффициент (k = 500 для обычных сталей и k = 400 для легированных); L - расстояние между опорами, см; dB - диаметр вала, см.

Чтобы сократить время правки вала, целесообразно на первом же этапе задать перемещение суппорта чуть меньше величины Δупр. Вначале брусок мягкого металла 2 (см. рис. 1) подводится к валу в месте максимального прогиба и со стороны «выпуклости»; показания нониуса записываются. Далее производится правка перемещением суппорта вперед на расстояние 0,9Δупр, после чего суппорт возвращается в нулевое положение (с обязательной выборкой люфта). Если после этого не появился зазор между валом и бруском, операция повторяется, но величина перемещения суппорта увеличивается на величину максимального прогиба вала. После того как при возвращении суппорта на нулевую отметку появился зазор, каждое последующее перемещение суппорта при правке делается больше предыдущего на величину максимального прогиба вала Дпр max за вычетом величины этого зазора.

После этого вал еще раз проверяется обязательно в двух взаимно перпендикулярных плоскостях. Биение валов диаметром 25-35 мм в районе муфты, винта, опорной шейки и дейдвудного сальника не должно превышать 0,15-0,3 мм, в остальных местах - 0,3-0,5 мм (меньшие цифры относятся к коротким валам с длиной менее 1200 мм). При необходимости правка повторяется с учетом того, что положение места максимального прогиба может быть другим.

В тех случаях, когда основной изгиб вала произошел в районе заднего опорного подшипника, целесообразно весь вал до шейки опорного подшипника вставить в шпиндель, а правку производить упором в ступицу винта. Попытка произвести правку без гребного винта приведет к изгибу посадочного конуса под винт, в связи с чем после напрессовки винта снова возникнет некоторый прогиб вала. В связи с тем, что вылет вала в этом случае невелик и жесткость вала достаточно высока, первоначальное перемещение суппорта можно принять равным прогибу вала. Чтобы исключить возможность повреждений поверхности вала кулачками патрона, вал рекомендуется обернуть медной или алюминиевой полосой. Правка вала в приспособлении (см. рис. 2) происходит благодаря усилию, развиваемому винтом 2. Величина прогиба измеряется по изменению расстояний между валами при помощи штангенциркуля.


1 - гребной вал; 2 - винт M16; 3 - поперечина, сталь δ=15-20; 4 - полоса δ=3-4; 5 - призма; 6 - штанга; пруток диаметром не менее 1,3 диаметра вала или труба диаметром не менее 1,5 диаметра вала; 7 - винт стопорный; 8 - труба; 9 - призма δ=8-12, приварить к трубе 8; 10 - штангенциркуль.

Необходимо учитывать, что одновременно с валом изгибается и штанга, поэтому величину суммарного прогиба в области упругих деформаций вала можно определить по зависимости (аналогичной ранее приведенной):

где dш - диаметр штанги, см.

В остальном методика правки аналогична рассмотренной выше.

Другими видами ремонта вала являются восстановление резьбы (как правило, при помощи наплавки с последующей механической обработкой) и изношенной шейки сальника (лучше всего - при помощи установки втулки из нержавеющей стали на эпоксидном клее).

Ремонт гребного винта. Характерные повреждения гребных винтов - это загиб, частичное или полное обламывание лопасти, появление трещин и т. п. Причиной подобных повреждений чаще всего являются удары лопастей о твердые предметы, однако нередки случаи обламывания лопастей без видимых внешних причин: по аналогии с гребными валами такие поломки объясняются появлением усталостных трещин из-за действия на лопасть знакопеременных нагрузок.

Слишком малое расстояние между краем лопасти и днищем катера, расположение винта за плохо обтекаемым дейдвудом и кронштейном, чрезмерный наклон вала, работа валопровода в условиях крутильных колебаний и т. п. - приводят к появлению знакопеременных нагрузок, действующих на лопасть. В принципе, при правильно выбранной толщине лопасти знакопеременные нагрузки могут привести к ее обламыванию только в сочетании с действием других факторов, таких, как коррозия или кавитационная эрозия, появление внутренних напряжений при ремонте путем правки лопасти в холодном состоянии или заварке трещин без последующего отжига и т. д. Таким образом, технология ремонта гребного винта оказывает существенное влияние на его дальнейшую работоспособность.

Холодная правка латунных лопастей возможна лишь при загибе их на угол не более 30°. Гибку лучше всего производить при помощи двух-трех рычагов длиной до 1 м, имеющих на концах прорези глубиной 6-8 см, надеваемые на кромку винта (рис. 3). Можно воспользоваться тисками, универсальным съемником для подшипников или любым прессом.


1 - винт; 2 - рычаг, сталь листовая δ=10 мм. При толщине лопасти до 5 мм L=600 мм, b=60 мм; при толщине до 8-10 мм L=1000 мм, b=80 мм; 3 - подкладная планка (медь, алюминий); 4 - кувалда тяжелая; 5 - кувалда легкая; 6 - наковальня.

При правке ударами с целью уменьшения местных деформаций лопасти лучше пользоваться свинцовой кувалдой. При правке стальной кувалдой на лопасть нужно наложить пластину из свинца, отожженной меди или алюминия. Правку производят на наковальне или любом тяжелом предмете, одерживая противоположный край лопасти тяжелой кувалдой.

При загибе лопасти больше чем на 30° правку необходимо вести с нагревом. (Удается и холодной правкой выправить лопасть, загнутую на 90°, а иногда и более, однако при этом дальнейшая работоспособность отремонтированной лопасти оказывается весьма малой.) Температура нагрева для латуни ЛМЦЖ 55-3-1 равна 550-700 °С, для ЛАМЦЖ 67-5-2-2 - 600-750 °С; при этом следует иметь в виду, что при недостаточном нагреве условия правки будут лишь незначительно отличаться от выполнения ее без нагрева. Нагрев лучше всего производить в горне или в печи; обеспечить плавный и равномерный нагрев при помощи ацетиленовых горелок обычно не удается.

После правки нужно обязательно произвести отжиг винта для снятия термических напряжений. Отжиг производят сначала медленным (не более 100 °С в час) нагревом до температуры 350-400 °С для латуни ЛМЦЖ 55-3-1 и 500-550 °С - для ЛАМЦЖ 67-5-2-2, а затем еще более медленным охлаждением вместе с печью (скорость охлаждения не выше 50 °С в час).

Очень часто при ремонте винтов приходится выполнять сварочные работы. Лучше всего, если есть возможность применить аргонно-дуговую сварку, однако удовлетворительные результаты получаются и при обычной газовой сварке. Горелка при этом должна быть отрегулирована на окислительное пламя (отношение О 2 /С 2 Н 2 = 1,2 - 1,3) для предотвращения появления в пламени свободного водорода, вызывающего резкое снижение прочности сварного шва. В качестве присадки при сварке латуни лучше всего применять проволоку из алюминиевых бронз. После сварки также целесообразно произвести отжиг; для латуни ЛМЦЖ 55-3-1 допускается замена отжига проколачиванием шва в холодном состоянии до появления заметных вмятин по всей его поверхности.

Стальные винты, особенно, если они изготовлены из нержавеющих сталей аустенитного класса 1-18 (например, 1Х18Н107), значительно менее чувствительны к остаточным напряжениям после гибки и сварки; применение отжига для них не обязательно.

Из-за малой пластичности алюминиевых сплавов холодную правку и гибку при ремонте отлитых из них винтов не применяют. Основным способом ремонта в данном случае является аргоно-дуговая сварка или обычная газовая сварка с применением специальных флюсов (АФ-4А). Присадочный материал должен быть идентичен основному металлу винта. После сварки желательно винт нагреть до температуры 300-350 °С и медленно охладить для снятия остаточных напряжений.

В процессе ремонта следует обратить особое внимание на восстановление первоначального шага лопасти. Напомним, что средний шаг лопасти определяется как среднее арифметическое значений шагов на пяти относительных радиусах R/0,5D = 0,3; 0,5; 0,7; 0,8; 9,95. Контроль шага лучше всего вести по фактической величине шага недеформированной лопасти того же винта. При этом различия в шагах в каждом из сечений не должны быть более 2-5%, а в среднем шаге более 1,5-4% (здесь и далее меньшие значения относятся к глиссирующим катерам).

Существуют различные приспособления для измерения шага. Одно из них изображено на рис. 4.


1 - втулка; 2 - гайка барашковая; 3 - шпилька М8; 4 - шаговый шаблон;
5 - винт; 6 - оправка.

При ремонте удобно пользоваться простейшим приспособлением (рис. 4), состоящим из оправки 6, имеющей коническую поверхность под отверстие в винте, и двух цилиндрических поверхностей (эта же оправка в дальнейшем может быть использована для балансировки винта). По меньшей цилиндрической шейке свободно перемещается втулка 1, к которой приварена шпилька 3, имеющая длину, несколько превышающую радиус винта. На шпильке двумя гайками-барашками крепится шаговый шаблон 4 из мягкой жести или алюминия. Шаблон изгибается приблизительно по проверяемому радиусу R изг подводится до упора в нагнетающую поверхность неповрежденной лопасти и фиксируется гайками-барашками. Затем, приподнимая втулку 1, шаблон подводят поочередно к другим лопастям, проверяя зазор между ним и лопастью. Далее шаблон перемещается на другое сечение лопасти и шаг проверяется на другом радиусе; шаблон, естественно, при этом должен быть изогнут по новому радиусу. Для винтов диаметром 300-400 мм зазор между лопастью и шаблоном не должен превышать 0,5-1,5 мм.

Если погнуты все лопасти винта, то вначале целесообразно выправить одну из них, наименее поврежденную, и уже по ней подгонять шаги остальных лопастей. При правке первой лопасти необходимо выдержать средний шаг лопасти и распределение шага вдоль радиуса (если, конечно, они известны).

Обычно считается, что фактический шаг лопасти не должен отличаться от расчетного более чем на 1,5-4%, однако эта рекомендация приемлема для гребных винтов, эксплуатирующихся с судовыми дизелями, работающими по внешней характеристике. Для конвертированных автомобильных двигателей работа по внешней характеристике не допускается, поэтому можно увеличить допустимое отличие действительного шага от расчетного до 10%. Отклонение значений местного шага по сечениям лопасти от закона распределения шага вдоль радиуса не должно превышать 5-10%. Однако следует иметь в виду, что отклонение величин местного шага на одних и тех же радиусах у разных лопастей должны быть значительно меньше (во избежание появления чрезмерной вибрации вала); это учтено в приведенных выше допусках на зазоры между шаговым шаблоном и лопастью. Крайне нежелательно увеличение шага в районе ступицы, приводящее к ухудшению антикавитационных свойств винта и увеличивающее вероятность подсоса воздуха.

После выполнения сварочных работ обычно возникает необходимость в опиловке шва с целью сохранения предусмотренной чертежом толщины лопасти. Небольшое изменение толщины практически не сказывается на тяге, развиваемой винтом, но может заметно ухудшить антикавитационные свойства винта. По этой причине допускаемое отклонение по толщине лопасти на водоизмещающих судах должно быть ограничено пределами от +20% до -10%, а для быстроходных глиссирующих - от +8% до -4%). (Меньшее значение отрицательного допуска объясняется опасностью чрезмерного снижения прочности лопасти.)

Лопасти винтов обычно имеют наклон в корму на угол 10-15°. После правки может оказаться, что эти углы у разных лопастей различны. Обнаружить это можно при вращении винта на оправке или, положив винт ступицей на ровную поверхность, замером расстояний до входящей и выходящей кромок на концевых радиусах. Разница в наклоне лопастей практически не оказывает влияния на упор винта, но нарушает динамическую уравновешенность и, следовательно, приводит к появлению вибрации. Поэтому существует рекомендация ограничить линейное отклонение конца лопасти величиной 1,5-3,0% диаметра винта.

Окончательной операцией является балансировка винта. Лишний вес лопасти удаляется опиловкой всей ее поверхности. Величина допустимого момента дисбаланса для винтов диаметром 300-400 мм - 50-200 г·см.

1 - обтекатель; 2 - лопасть гребного винта; 3 - ступица гребного винта; 4 - кронштейн; 5 - гребной вал; 6 - дейдвудное устройство; 7 - промежуточный вал; 8 - опорный под­шипник; 9 - тормоз; 10 - упорный подшипник; 11 - упорный вал; 12 - вал главного двигателя.

Основными элементами валопровода являются:

Гребной вал;

Промежуточные валы;

Главный упорный подшипник;

Опорные подшипники;

Дейдвудное устройство.

ДЕЙДВУДНЫе ТРУБы И ОБЛИЦОВКи

В качестве дейдвудных подшипников применяют подшипники скольжения с водяной или масляной смазкой, устанавливаемые в дейдвудной трубе. Дейдвудная труба крепится носовым концом к последней ахтерпиковой переборке, а другим - к кормовой оконечности корпуса, например в отверстии мортиры.

В настоящее время в судостроении широко применяют два конструктивных типа неметаллических подшипников с охлаждением и смазкой водой: наборные из отдельных вкладышей и монолитные в виде цилиндрических втулок.

Для изготовления втулок дейдвудных подшипников, работающих в морской воде, используют коррозионно-стойкие материалы: латуни ЛЦ40Мц1,5, ЛЦ40МцЗЖ, ЛЦ16К4, бронзы БрА9Мц2Л, БрОЮЦ2 и ряд других латуней и бронз. В качестве антифрикционного материала для вкладышей неметаллических подшипников применяют бакаут, текстолит, резину, ДСП, полиамиды; для металлических подшипников - баббит. Характеристики неметаллических материалов приведены в табл. 6.2. Бакаутом называют древесину гваякового (железного) дерева.

Судовые движители.

Движителем наз. такое судовое устройство, которое, используя работу двигателя, создает в воде упор – силу, способную двигать судно в заданном направлении.

Движители делятся на:

Лопастные - гребные винты, крыльчатые движители, гребные колеса;

Водометные.

Гребной винт (рис.7) имеет от 3 до 6 лопастей, установленных радиально на ступице. Поверхности лопастей, обращенные в нос судна наз. засасывающими , обращенные в корму-нагнетающими. Различают винты правого и левого вращения. Для повышения эффективности гребных винтов применяют направляющие насадки и пропульсивные наделки на руль. Направляющие насадки бывают неподвижными и поворотными, применяются на больших и малых судах. Пропульсивная наделка на руль упорядочивает поток воды за ступицей и повышает КПД винта, а также улучшает условия руля.

Рис.7 Винт

Винт регулируемого шага (ВРШ) имеет лопасти, поворачивающиеся вокруг их вертикальной оси. Их можно устанавливать под любым углом, образуя шаг,необходимый для данного режима работы судна. ВРШ позволяет не только использовать двигатель судна в разных условиях эксплуатации, но и удерживать его на месте, не выключая двигатель.

Рис. 10. Винт регулируемого шага ,

/ - ползун; 2-шатун; 3 - кривошипный диск; 4 - шток; 5-поршень! 6-золотниковый регулятор; 7 -привод управления; 8 - масляный насос; 9 - электродвигатель; 10 - масляная цистерна.

По способу соединения лопастей со ступицей различают гребные винты цельные и со съемными лопастями. Широкое распространение получили гребные винты регулируемого шага (ВРШ), у которых шаг лопастей можно изменять путем их поворота на ходу судна. Число лопастей гребных винтов современных транспортных судов изменяется в пределах от трех до шести, редко - более.

Диаметр гребных винтов современных судов большого водоизмещения достигает 10 м и более.

Крыльчатый движитель представляет собой диск, вмонтированный заподлицо с днищевой обшивкой и приводящийся во вращение вокруг вертикальной оси судовым двигателем. По окружности диска перпендикулярно к нему расположены 4-8 погруженных в воду лопастей, каждая из которых вращается вместе с диском, а также вокруг своей оси.

Водометные движители

Водометный катер «Мурена»

На катере предусмотрена установка одноступенчатого водометного движителя. Основными его деталями являются: водозаборник с защитной решеткой на входе и фланцем для крепления движителя к транцу катера; четырехлопастной ротор, имеющий дисковое отношение A/Ad = 0,8, диаметр 189 и шаг 190 мм; сопло с вмонтированным в него спрямляющим аппаратом; реверсивно-рулевое устройство и гребной вал с подшипниками и дейдвудным уплотнением.

1 - гребной вал; 2 - крышка корпуса дейдвудного подшипника; 3 - сальник Ø 20X42X11; 4 - гайка М8, 10 шт.; 5 - шайба 8, 10 шт.; 6 - прокладка; 7 - подшипник № 46205; 8 - пресс-масленка; 9 - сальник Ø 25X47X11, 2 шт.; 10 - корпус дейдвудного подшипника; 11 - водозаборник; 12 - корпус смотрового лючка; 13 - гайка-барашек М10, 2 шт.; 14 - крышка лючка; металл, пенопласт, стеклопластик; 15 - статор (кольцо с фланцем); 16 - болт М8X70, 6 шт.; 17 - шплинт 2,5X45; 18 - гайка-обтекатель; 19 - реверсивно-рулевое устройство; 20 - резино-металлический подшипник; 21 - винт М4X12; 22 - гайка М24X1; 23 - стопорная шайба; 24 - сопло - спрямляющий аппарат; 25 - ротор; 26 - шпонка Б 8X50; сталь 2X13; 27 - заполнитель - пенопласт; 28 - приформовка, стеклопластик; 29 - винт М6Х12, 8 шт.; 30 - полоса защитной решетки 3Х18; 31 - планка 4X20X150, 2 шт.; 32 - штуцер - водозаборник системы охлаждения двигателя; 33 - штуцер вентиляции ротора; 34,35 - фланцы; 36 - ступица спрямляющего аппарата; 37 - лопатка спрямляющего аппарата; 38 - насадка реверсивно-рулевого устройства; 39 - шпилька М8X24; 40 - обтекатель.

Судовые устройства.

Служат для обеспечения необходимых эксплуатационных и навигационных качеств судна. К основным судовым устройствам, которыми оборудуют почти все суда, относятся: рулевое,якорное, швартовное, кранцевое, шлюпочное, грузовое, буксирное, леерное, тентовое и др.

Рулевое и подруливающее устройство.

Рулевое устройство, в состав которого входят руль и привод руля, предназначено для управления судном.

Руль состоит из пера и баллера. Перо - это плоский или двухслойный обтекаемый щит с внутренними подкрепляющими ребрами. Баллер - это стержень, при помощи которого поворачивают перо руля. Различают: обыкновенные рули, балансирные рули, полубалансирные рули.

Рис.12 Рулевое устройство с электрическим приводом:

а - расположение рулевого устройства.

1 - рулевая машина; 2 - рулевой штырь; 3 - полубалансирный руль; 4 - баллер руля.

b - секторная рулевая передача с электрическим приводом.

1 - ручной штурвальный привод (аварийный привод); 2 - румпель; 3 - редуктор;

4 - рулевой сектор; 5 - двигатель; 6 - пружина; 7 - баллер руля;

8 - профильный фигурный руль; 9 - сегмент червячного колеса и тормоза; 10 - червяк.

Рис.13 Рулевое устройство с гидравлическим приводом:

а - схема гидропривода рулевого устройства типа Атлас с телемоторами;

b - поршень гидравлической рулевой машины.

1 - подключение к бортовой сети; 2 - кабельные соединения; 3 - запасная канистра;

4 - рулевой насос; 5 - рулевая колонка с датчиком телемотора; 6 - индикаторный прибор;

7 - приемник телемоторов; 8 - двигатель; 9 - гидравлическая рулевая машина;

10 - баллер руля; 11 - датчик указателя положения руля.

Рис. 7.14. Схема рулевого устройства

1,2- втулки баллера; 3 - компенсирующее кольцо; 4 - упорный подшипник баллера; 5 - бугель; б - масленка; 7 - гельмпортова труба; 8 - резиновое кольцо; 9 - уплотнение ра; 10 - пятка ахтерштевня; 11 - упор; 12 - штырь; 13- облицовка штыря; 14 - втулка бронзовая; 15 - баллер; 16 - перо руля; 17 - рулевая машина

Привод руля состоит из механизмов и устройств, предназначенных для перекладки руля на борт. В их число входят рулевая машина, рулевой привод. Рулевую машину обычно размещают в специальном румпельном отделении. Передача на руль усилий. Развиваемых в рулевой машине, осуществляется с помощью рулевого привода . Различают румпельный, секторный и винтовой приводы.

Привод управления рулевой машины (рулевая передача) служит для передачи команд из рулевой рубки на рулевую машину.

Дополнительные средства управления:

Носовой руль;

Активный руль;

Поворотная насадка;

Подруливающее устройство.

Рулевая машина состоит из следующих основных конструктивных узлов: привода к баллеру (румпель, гидравлические цилиндры, плунжеры, ползуны); насосов постоянной или переменной производительности; электроприводов насосов; аварийного привода; системы управления и масляного трубопровода с ручным насосом, арматурой и баками.

Рис. 17.1. Привод к баллеру руля рулевой машины в четырехцилиндровом

Исполнении

Цилиндры (рис. 17.2) небольших рулевых машин изготовляют цельными, а больших размеров (для упрощения получения заготовки и обработки) - сварными либо собранными из двух частей: цилиндра и донышка.

Рис. 17.2. Цилиндр

Рис. 17.3. Плунжер

Рис. 17.4. Румпель

Основные детали должны обладать высокой прочностью, иметь большую точность взаимного расположения, высокую точность и шероховатость рабочих поверхностей.

Цилиндры, состоящие из двух частей, обрабатывают в следующем порядке. Вначале обрабатывают каждую часть в отдельности с припуском на дальнейшую механическую обработку и торцы под сварку. Чтобы получить высокую точность соосности и параллельности, расточку ведут двух пар цилиндров с проверкой индикатором их установки по поверхности сопряжения с направляющими балками с точностью 0,01 мм. При этом вначале растачивают поверхности первой пары цилиндров, а затем, не изменяя установку шпинделя по вертикали, - второй пары цилиндров одной рулевой машины.

Якорное устройство.

Служит для обеспечения надежной стоянки в море, на рейде и в других местах, удаленных от берега, путем крепления за грунт с помощью якоря и якорной цепи. В его состав входят: якоря (рис.9), якорные цепи (рис.9), якорные машины, якорные клюзы и стопоры.


Рис.9 Якорь, якорная цепь

Якоря различают на становые и вспомогательные .

Основными частями любого якоря являются веретено и рога (лапы).

Якорная цепь служит для крепления якоря к корпусу судна.

Якорными машинами для подъема якоря служат лебедки с горизонтальной осью вращения барабана- брашпили - или с вертикальной осью вращения барабана- шпили.

Рис. 7.13 Схема якорного устройства

1 - якорь; 2 - якорная ниша; 3 - труба якорного клюза; 4 - палубный клюз; 5 - якорная Цепь; б - винтовой стопор; 7 - брашпиль; 8 - труба в цепной ящик; 9 - цепной ящик; 10- зашивка цепного ящика; 11 - привод отдачи коренного конца якорной цепи; 12 - глаголь-гак

Якорно-швартовные шпили бывают одноголовые и двухголовые с вертикальным расположением швартовного барабана и цепной звездочки. Двухпалубные шпили изготовляют в виде отдельных узлов: головки с баллером, привода с редуктором и ручного привода тормоза,- из которых они собираются на стенде и на судне. Однопалубные шпили более компактны - у них отсутствует баллер; все узлы и детали располагаются в одной плоскости, что позволяет изготовлять их в агрегатном виде.

Двухпалубный одноголовый с электрическим приводом якорно-швартовный шпиль (рис. 18.1) включает в себя головку шпиля, состоящую из швартовного барабана 2, надетого на баллер на двух шпонках, и цепную звездочку 3,

.

Рис. 18.1. Якорно-швартовный двухпалубный шпиль с электрическим

приводом

.

Стопоры предназначены для крепления якорных цепей и удержания якоря в клюзе в походном положении.

Швартовное и кранцевое устройства.

Швартовное устройство служит для обеспечения надежной стоянки судна у пирса или около другого плавучего сооружения (судна, бочки).

В состав входят:

-кнехты- стальные или чугунные тумбы для крепления швартовов на судне;

-клюзы- стальные или чугунные отливки с овальным отверстием в фальшборте для направления швартова к швартовному кнехту;

Лебедки (рис.10) или шпили (рис.11) (паровые, электрические, гидравлические)- предназначены для подтягивания судна к пирсу после закрепления на нем швартовов. Лебедки бывают простые и автоматические.


Чтобы предотвратить повреждения борта при швартовке к причалу, особенно при швартовке судов друг к другу в открытом море на волнении, на судах предусматривают кранцевое устройство - мягкие или деревянные подушки, вываливаемые за борт или закрепленные постоянно на борту в местах, наиболее подверженных ударам.

Спасательные средства.

Спасательные средства - это совокупность предусмотренных на судне средств спасания пассажиров и экипажа, включающая:

§ шлюпочное устройство , предназначено для спасения людей в случаи гибели судна, а также для сообщения с берегом и другими судами. В состав входят: спасательные шлюпки (рис.12), плоты, капсулы , рабочие шлюпки, разъездные катера, шлюпбалки ;

§ спасательные плоты ;

§ плавучие приборы и спасательные средства индивидуального пользования.


Рис.12 спасательные шлюпки.

Грузовые устройства.

Предназначены для выполнения погрузочно-разгрузочных работ судовыми средствами. В состав грузовых устройств на сухогрузных судах входят стрелы или краны, закрытия грузовых люков и средства внутритрюмной механизации.

Рис. 23 Грузовые мачты: а) – одиночная; б) – Л-образная; в) – П-образная

Буксирные устройства буксирных судов.

Буксирное устройство , устанавливаемое на буксирных и спасательных судах, предназначено для буксировки несамоходных судов и плавсредств, а также самоходных судов, потерявших возможность двигаться своим ходом.

В состав входят:

Буксирная лебедка,

Гак, или направляющий блок,

Буксирная дуга,

буксирный клюз и ограничители буксирного троса.

Специальные устройства (например, передачи грузов, рыбопромысловые, научно-исследовательские и т.п.).

Арматура судовых трубопроводов служит для пуска и выключения системы, разобщения отдельных ее участков, регулирования количества и давления рабочей среды, изменения направления ее движения. Арматуру разделяют на краны, клапаны, клинкеты , захлопки и заслонки.

Гребной вал

элемент валопровода, непосредственно соединенный с гребным винтом. На больших судах длина гребного вала до 12 м; на малых непосредственно соединен с двигателем и гребным винтом.

  • - Гребно́й кана́л в статье «Крылатское»...

    Москва (энциклопедия)

  • - находится на Крестовском острове, в северо-западной его части, на территории Приморского парка Победы...

    Санкт-Петербург (энциклопедия)

  • - движитель, преобразующий энергию вращения вала двигателя в поступательное движение корабля. Состоит из 2-6 широких лопастей, закреплённых иа втулке под углом к плоскости вращения...

    Словарь военных терминов

  • - судовой реактивный движитель, в основу образования которого положена винтовая поверхность...

    Морской словарь

  • - элемент валопровода, непосредственно соединенный с гребным винтом. На больших судах длина гребного вала до 12 м; на малых непосредственно соединен с двигателем и гребным винтом...

    Морской словарь

  • - лопастной движитель. Состоит из насаживаемой на гребной вал ступицы с 2-6 лопастями, закрепленными на ней под некоторым углом к плоскости вращения...

    Морской словарь

  • - наиболее употребительный движитель морских паровых судов, представляет собою тело, напоминающее по форме крылья ветряных мельниц...

    Энциклопедический словарь Брокгауза и Евфрона

  • - наиболее распространённый судовой Движитель...

    Большая Советская энциклопедия

  • - искусственный водоем для тренировок и соревнований по гребному спорту. Ширина до 200 м, длина около 4000 м, глубина не менее 2 м. Один из крупнейших в Европе гребных каналов в Крылатском...

    Современная энциклопедия

  • - ...

    Орфографический словарь русского языка

  • - ГРЕСТИ́ 2, гребу́, гребёшь; грёб, гребла́; грёбший; гребя́; несов...

    Толковый словарь Ожегова

  • - ГРЕБНО́Й, гребная, гребное. 1. прил. к гребля. Гребной спорт. 2. Приводимый в движение греблей, веслами. Гребное судно. 3. Совершающий греблю, гребущий. Гребной винт, гребное колесо. Воздушный гребной винт...

    Толковый словарь Ушакова

  • - гребно́й прил. 1. соотн. с сущ. гребля I, связанный с ним 2. Свойственный гребле, характерный для неё. 3. Предназначенный для гребли...

    Толковый словарь Ефремовой

  • - гребн"...

    Русский орфографический словарь

  • - ...

    Формы слова

  • - прил., кол-во синонимов: 1 спортивный...

    Словарь синонимов

"Гребной вал" в книгах

СПИРАЛЬНЫЙ ГРЕБНОЙ ВИНТ

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

СПИРАЛЬНЫЙ ГРЕБНОЙ ВИНТ Тем не менее, в существующих условиях наилучшие результаты для надводных судов дает спиральный гребной винт, который приводится в движение четырь я путями. Первый, прямо от вала первичного двигателя; второй, посредством шестерни; третий, через

Гребной флот времен битвы при Лепанто

Из книги История войн на море с древнейших времен до конца XIX века автора Штенцель Альфред

Гребной флот времен битвы при Лепанто Что касается материальной части тогдашних военных флотов, то на Средиземном море средством передвижения, как и в древности, оставались весла, а двигательной силой – мускульная сила человека, но в способе употребления весел была

Гребной канал

Из книги Легендарные улицы Санкт-Петербурга автора Ерофеев Алексей Дмитриевич

Гребной канал Канал прорыт в 1960-е годы по руслу реки Винновки, вытекавшей из Средней Невки и впадавшей в Большую. Речка отделяла Бычий остров от Крестовского, происхождение ее названия неизвестно.Старое устье реки – это протока, выходящая к Большой Невке западнее

ГРЕБНОЙ КАНАЛ

Из книги Петербург в названиях улиц. Происхождение названий улиц и проспектов, рек и каналов, мостов и островов автора Ерофеев Алексей

ГРЕБНОЙ КАНАЛ Канал прорыт в 1960-е годы по руслу реки Винновки, вытекавшей из Средней Невки и впадавшей в Большую. Речка отделяла Бычий остров от Крестовского, происхождение ее названия неизвестно.Старое устье реки – это протока, выходящая к Большой Невке западнее

Гребной корабль

Из книги Большая энциклопедия техники автора Коллектив авторов

Гребной корабль Гребной корабль – военный корабль, приводимый в движение с помощью весел. Истории известны гребные корабли, созданные в древние времена из цельных стволов деревьев. Позже борта наращивались корой или досками и уже назывались ладьями. На Руси такие

Гребной винт

БСЭ

Гребной спорт

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гребной флот

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гребной слалом

Из книги Том 2. Водные виды спорта автора Свиньин Владимир Федорович

Гребной слалом Гребной слалом – дисциплина гребли на байдарках и каноэ, преодоление на скорость размеченной воротами дистанции: участка порожистой реки или искусственной трассы (скорость потока воды должна быть не менее 2 м/сек.).В зависимости от длины дистанции,

Гребной движитель

Из книги Боевые корабли древнего Китая, 200 г. до н.э. - 1413 г. н.э. автора Иванов С. В.

Гребной движитель Отличительной чертой многих типов китайских кораблей и судов были весла, так называемые юло. Китайское весло принципиально отличалось от весла европейского, по могло также встречаться на корейских и японских кораблях. Весло-юло работало по принципу

ГРЕБНОЙ ФЛОТ В ОБОРОНЕ РИГИ В 1812 г.

автора

ГРЕБНОЙ ФЛОТ В ОБОРОНЕ РИГИ В 1812 г. Уже в 1810 г., когда Российская империя начала подготовку к войне с Наполеоном, разрабатывались возможные варианты зашиты Рижской крепости. В 1811 г. инженер-генерал-майор К.И. Опперман составил инструкцию для обороны Риги. В ней в числе

ГРЕБНОЙ ФЛОТ ПРИ ОСАДЕ ДАНЦИГА В 1813 г.

Из книги Русский флот в войнах с наполеоновской Францией автора Чернышев Александр Алексеевич

ГРЕБНОЙ ФЛОТ ПРИ ОСАДЕ ДАНЦИГА В 1813 г. В январе 1813 г. к Данцигу, занятому французскими войсками, подошла часть армии П.Х. Витгенштейна, но по недостатку сил она ограничивалась лишь наблюдением за крепостью. В феврале у Данцига был оставлен корпус генерала Ф.Ф. Левиза (19

Гребной танкер, або Маневр капитана Смита

Из книги автора

Гребной танкер, або Маневр капитана Смита Я не очень люблю конспирологию и альтернативную реальность, особенно в политике и сражениях - обсуждения «что было бы, если корпус Груши пришел под Ватерлоо, а Гитлера обрезали в детстве и отправили учиться в хедер?» Однако

Гребной спорт

Из книги Спортивные события 2013 автора Яременко Николай Николаевич

Гребной спорт Строительство первого искусственного слаломного канала в России должно закончиться в 2013 году, заявил глава Федерации гребного слалома России (ФГСР) Сергей Папуш.Памятный знак в честь начала строительства гребного слаломного канала был установлен

§ 47. Передача мощности двигателей на гребной вал

Из книги Общее устройство судов автора Чайников К. Н.

§ 47. Передача мощности двигателей на гребной вал Передаточные механизмы от главного судового двигателя на гребной вал служат главным образом для снижения количества оборотов ГССУ, передающихся движителю. Для получения максимального значения пропульсивного к. п. д.

Валопровод является одним из важнейших элементов пропульсивного комплекса. Основное назначение валопровода - передача механической энергии от главного двигателя к движителю и передача развиваемого движителем упора корпусу судна.

Промежуточный вал

В соответствии с Правилами классификации и постройки судов внутреннего плавания Российского Речного Регистра (далее - ПСВП) диаметр промежуточного вала d пр. должен быть не менее :

где R m = 570 МПа - временное сопротивление материала вала (сталь 45Х),

k = 130 - промежуточный вал с коваными фланцами;

С EW = 1,05 - коэффициент усиления;

P = 700 кВт - расчетная мощность, передаваемая валом;

n = 174 мин -1 - частота вращения промежуточного вала.

d i - диаметр осевого отверстия вала.

d r - наружный диаметр вала.

Для дальнейших расчетов принимаем диаметр промежуточного вала d пр = 170 мм

Упорный вал

Диаметр упорного вала считаем по той же формуле, что и диаметр промежуточного вала. Для упорного вала в подшипниках качения(3.2.2, с.34) k=142. Таким образом получаем:

Для дальнейших расчётов принимается d уп = 185 мм.

Гребной вал

В соответствии с ПСВП диаметр гребного вала определяется по той же формуле, что и диаметр промежуточного :

где k = 160 - гребной вал длиной более 4 диаметров гребного вала от носового торца ступицы гребного винта.

Для дальнейших расчетов принимаем диаметр гребного вала d гр = 205 мм.

В соответствии с пунктом 3.5.1. ПСВП конус гребного вала под гребной винт должен выполняться с конусностью не более 1:12.

Для защиты вала от коррозии выбирается бронзовая облицовка. В соответствии с пунктом 3.3.3. ПСВП толщина бронзовой облицовки должна быть не менее :

где d гр = 205 мм - действительный диаметр гребного вала.

Толщина бронзовой облицовки принимается равной s = 14 мм.

Толщина облицовки между подшипниками может быть:

S"=0,75 . 14=10,5 мм. Принимаем 11 мм.

Толщина соединительных фланцев промежуточного и внутреннего конца гребного вала должна быть не менее наибольшей из величин:

0,2 . d пр =0,2 . 170=34 мм

где: d пр - диаметр промежуточного вала;

R мв - временное сопротивление материала вала, МПа;

R мб - временное сопротивление материала болта, МПа;

i - число болтов в соединении;

D - диаметр центровой окружности соединительных болтов, мм.

Принимаю d Б =35 мм.

Принимаю для соединения 8 болтов с резьбой М35.

Конусность валов 1:10, таким образом, соединения валов с муфтой можно выполнить с концевыми гайками.

Элементы валопровода

Упорный подшипник

Выбирается подшипник упорный с диаметром упорной шейки 400 мм.

Максимальный упор Р max = 200 кН.

Опорные подшипники

В качестве опорных подшипников используются подшипники скольжения с фитильно-кольцевой системой смазки. Подшипник подбирается по диаметру промежуточного вала d пр = 170 мм согласно ОСТ 5.4153-75.

Согласно ПСВП, максимальное расстояние между смежными подшипниками :

где k 1 = 450 коэффициент для подшипников скольжения.

d r = d пр = 170мм - диаметр вала.

Минимальное расстояние между смежными подшипниками:

Так как расстояние от упорного подшипника до дейдвудного подшипника не превышает 6000 мм, то принимаем к установке один опорный подшипник скольжения по ОСТ 5.4153-75.

Расчет тормозного устройства

Согласно ПСВП, в составе каждого валопровода должно быть тормозное или стопорящее устройство, предотвращающее вращение валов в случае выхода из строя главного двигателя.

Скорость буксировки принимаем v = 3 м/с.

При буксировке судна с выключенным главным двигателем гребной винт под действием набегающего потока создает вращающий момент:

где k m = 0,027 - коэффициент момента,

с = 1 т/м 3 - плотность воды,

D B = 2,408 м - диаметр гребного винта,

ш = 0,25 - коэффициент попутного потока.

Диаметр тормоза, исходя из момента:

где р = 7500 кПа - допустимое удельное давление,

f = 0,4 - коэффициент трения (сталь-феррадо),

k = 0,11- отношение ширины бугеля к диаметру тормоза,

б = 100 0 =1,7 рад - угол обхвата тормозной колодки.

Так как тормозное устройство устанавливается на фланцевом соединении гребного и промежуточного валов, то принимаем диаметр тормоза равным диаметру фланца.

D T = D Ф = 0,62 м.

Сила трения:

Усилие затяжки (по формуле Эйлера):

где б = 1,7 рад - угол обхвата фрикционной колодки.

Для сжатия колодок применяем винт с резьбой М30.

Шаг резьбы s = 3,5 мм.

Средний диаметр принимаем d ср = 0,9d = 0,9 30 = 27 мм.

Угол подъема винтовой линии:

Угол трения резьбы:

где в = 60 0 = 1,05 рад - угол профиля резьбы,

м = 0,25 - коэффициент трения

Момент затяжки:

Усилие затяжки:

L-длина рычага, м

P з? 0.735кН для 1 чел.

Конструкция тормоза показана на рисунке 1.

Рис. 1

Проверка валопровода на критическую частоту вращения

Для определения критической частоты вращения гребного вала при поперечных колебаниях валопровод условно заменяется двухопорной балкой с одним свешивающимся концом. Расчетная схема балки показана на рисунке 2.

Рис. 2

l1 = 11,27 м, l2 = 1,38 м.

Вес гребного винта.



Вам также будет интересно:

Теодор Курентзис: пермская аномалия
Мир знает множество талантливых дирижеров, способных лишь по взмаху палочки заставить...
Как сделать трубочки из слоеного
Слоёные трубочки с кремом – лакомство родом из детства. Кулинары же ценят трубочки из...
Лунный календарь на декабрь года неблагоприятные
Энергетика Луны всегда имела большое влияние на деятельность людей. Рекомендации астрологов...
Как пожарить окуня на сковороде: рецепты приготовления
Целиком тушку окуня жарить 15 минут: по 7-8 минут с каждой стороны. Мелкого окуня жарить 10...
Как выучить корейский: советы для начинающих
Если вы интересуетесь изучением корейского языка, то наверняка знаете, что им пользуются в...