Простое зарядное устройство для никель-кадмиевых аккумуляторов. Зарядка для никелевых Ni-Cd и Ni-MH аккумуляторов схема Простая зарядка для никель кадмиевых аккумуляторов


Несложное компактное зарядное устройство для NiMH и NiCd аккумуляторов с дополнительными полезными функциями, такими как автоматическое отключение и контроль температуры.


USB порт есть почти во всех современных компьютерах и ноутбуках. Сила тока отдаваемым USB 2.0 может быть более 500 миллиампер, при напряжении 5 Вольт, то есть минимум 2,5 Ватт, а USB третьего поколения еще больше. Использование такого источника энергии очень удобно, так как многие зарядки для смартфонов/планшетов также идут с разъёмом юсб, да и компьютер часто находиться под рукой. Сегодня мы сделаем зарядку для пальчиковых (AA) и мизинчиков (AAA) NiMH/NiCd аккумуляторных батарей от USB порта. Промышленные ЗУ для аккумуляторов от USB можно пересчитать по пальцам и обычно они заряжают маленьких током, что значительно увеличивает время подзарядки. К тому же собрав простенькую схемку мы получаем прекрасное зарядное устройство со световой индикацией и температурных датчиком стоимость которого весьма мала 1-2$.


Наше зарядное устройство подзаряжает сразу два NiCd/NiMH аккумулятора током более 470 mA, что делает зарядку очень быстрой. Перезаряжаемые батареи могут нагреваться, что несомненно негативно будет влиять на них, уменьшится ёмкость, пиковая отдаваемая сила тока, время нормальной эксплуатации. Чтобы такого не было в схеме реализовано автоматические прекращение подачи энергии, как только температура аккумуляторов будет 33 и более градусов по Цельсию. За эту полезную функцию отвечает NTC термистор с сопротивлением 10 кОм, при нагреве его сопротивление уменьшается. Он вместе с постоянным резистором R4 образует делитель напряжения. Термистор обязательно должен быть в тесном контакте с аккумуляторами, чтобы хорошо воспринимать изменение температуры.


Главной деталью схемы является сдвоенный компаратор-микросхема LM393.

Аналоги, которыми можно заменить LM393: 1040СА1, 1401CA3, AN1393, AN6916.


При заряде транзистор греется, его нужно обязательно ставить на радиатор. Вместо TIP32 возможно взять почти любой PNP структуры со схожей мощностью, я использовал КТ838А. Полным отечественным аналогом является транзистор КТ816, он имеет иную цоколевку и корпус.

USB кабель можно отрезать от старой мышки/клавиатуры или купить. А возможно вообще штекер юсб припаять прямо на плату.

Если при подаче питания светодиод горит, но схема ничего не заряжает то нужно увеличить сопротивление токоограничительного резистора R6. Для проверки нормальной работы схемы между землей и третьим выводом микросхемы (Vref) должно быть около 2,37 Вольт, а на втором контакте (Vtmp) LM393 1,6-1,85 Вольт.

Заряжать желательно два одинаковых аккумулятора, чтобы их ёмкость была примерно равна. А то получиться так, что один уже зарядился полностью, а второй только на половину.

Зарядный ток можно самостоятельно выставить, изменяя сопротивление резистора R1. Формула расчета: R1 = 1,6 * нужный ток.

К примеру, я хочу, чтобы мои аккумуляторы заряжались током 200 mA, подставляем:

R1 = 1,6 * 200 = 320 Ом



Это значит, что, установив переменный/подстрочный резистор мы можем добавить такую необычную функцию для зарядных устройств как самостоятельный выбор зарядного тока. Если, к примеру, аккумулятор нуждается в заряде током не более 0,1C то выкрутив резистор мы с легкостью выставим нужно нам значение. Это очень актуально для вот таких миниатюрных промышленных аккумуляторов, у которых ёмкость крайне мала и обусловлена их размерами.


При нагреве аккумуляторов зарядка будет отключаться. Это может увеличить время заряда, поэтому рекомендую ставить охлаждение в виде небольшого вентилятора.


Если у вас NiCd аккумуляторы, то их перед зарядкой нужно разрядить до 1 Вольта, то есть чтобы было использовано 99% ёмкости. Иначе будет чувствоваться негативный эффект памяти.

Когда банки будут полностью заряжены зарядный ток упадет примерно до 10 мА. Этот ток предотвратит естественный саморазряд никель-металлогидридных/камдиевых аккумуляторов. У первых наблюдается 100% разряд за год, а у второго типа примерно 10%.


Печатная плата для зарядного устройства существует в нескольких версиях, в одной из них USB гнездо удобно расположено прям на плате, то бишь возможно эксплуатировать USB шнур типа папа-папа.




Скачать платы в формате.lay можно тут

С. Рычихин

Предлагаю вариант несложного зарядного устройства. Для его сборки можно использовать детали из отслужившей свой век отечественной аппаратуры.

Прибор представляет собой регулируемый стабилизированный источник тока, позволяющий поддерживать заданное значение зарядного тока в течение всего процесса зарядки аккумуляторов. Схема устройства приведена на рис. 1.

Сетевое напряжение понижает трансформатор Т1, выпрямляет диодный мост VD1 и сглаживает конденсатор С1. Выпрямленное и сглаженное напряжение поступает на стабилизатор тока, собранный на транзисторах VT1, VT2, стабилитроне VD2 и резисторах R2-R6.

Принцип действия стабилизатора тока весьма прост: на транзисторе VT1 собран обычный стабилизатор напряжения, на базу которого подано образцовое напряжение со стабилитрона VD2, а в цепь эмиттера включены резисторы R4-R6, которые задают ток зарядки аккумуляторов. Поскольку напряжение на базе транзистора VT1, а значит, и на этих резисторах стабилизировано, то и ток, протекающий через них и участок эмиттер-коллектор транзистора VT1, стабилен. Следовательно, стабилен и ток базы транзистора VT2, который регулирует зарядный ток аккумуляторов. Резисторами R5 и R6 осуществляют соответственно грубую и точную регулировки тока зарядки. Зарядный ток контролируют по показаниям миллиамперметра РА1. Диод VD3 предотвращает разрядку подключенных аккумуляторов при выключении устройства. Светодиод HL1 индицирует подключение зарядного устройства к сети.

В устройстве вместо указанных на схеме можно использовать любые транзисторы серий КТ315 (VT1), КТ814, КТ816 (VT2). Транзистор VT2 желательно установить на небольшой теплоотвод площадью 8... 10 см2. Допустимый прямой ток диодов VD1 и VD3 должен быть не менее максимального тока зарядки аккумуляторов. Стабилитрон VD2 - любой на напряжение 10...12 В. Постоянные резисторы - МЛТ-0,5, переменные - любые. Конденсатор С1 - любой оксидный, емкостью не менее указанной на схеме и номинальным напряжением не менее амплитудного значения напряжения на вторичной обмотке трансформатора Т1.

Трансформатор - выходной трансформатор кадровой развертки лампового телевизора ТВК-70Л2. Его магнитопровод необходимо перебрать встык, удалив бумажную изолирующую прокладку в зазоре между торцами пластин магнитопровода. Первичная обмотка остается, а вторичную необходимо перемотать. Первичная обмотка содержит 3000 витков провода ПЭВ-1 диаметром 0,12 мм, вторичная (перемотанная) - 330 витков провода ПЭВ-2 диаметром 0,23 мм. Сечение магнитопровода - 18x23 мм. Напряжение на вторичной обмотке доработанного трансформатора должно находиться в пределах 22...25 В. Миллиамперметр постоянного тока - любой с током полного отклонения 50 мА.

Все детали зарядного устройства, за исключением трансформатора Т1, светодиода HL1, переменных резисторов R5 и R6, миллиамперметра РА1 и регулирующего транзистора VT2, собирают на печатной плате, чертеж которой приведен на рис. 2.

Внешний вид собранного устройства показан на рис. 3.


Алгоритм зарядки весьма прост: разряженные аккумуляторы подключа ют к зарядному устройству и заряжают в течение 16 ч. Зарядный ток выбирают исходя из номинальной емкости аккумулятора. Для этого емкость аккумулятора (в А-ч) умножают на 100 и получают зарядный ток в миллиамперах. Например, для аккумулятора ЦНК-0,45 зарядный ток равен 45 мА, а для батареи 7Д-0,125 - 12,5 мА.

Безошибочно собранное устройство в налаживании не нуждается.
[email protected]

Сегодня одним из самых популярных видов пополнения энергии бытовой техники являются никель-кадмиевые аккумуляторы. Это довольно простое в эксплуатации устройство, которое при правильном обращении прослужит достаточно длительный промежуток времени. Как правильно обращаться с никель-кадмиевыми аккумуляторами, следует рассмотреть подробнее.

Общая характеристика

Никель-кадмиевый аккумулятор устроен так, что при низком внутреннем сопротивлении он может отдавать достаточно большой ток. Такие аккумуляторы выдерживают даже короткое замыкание.

Аккумуляторы представленного типа легко выдерживают длительные нагрузки. При понижении температуры окружающей среды их работоспособность практически не меняется.

Никель-кадмиевые аккумуляторы уступают другим видам в емкости. Однако их высокая отдача делает батареи одними из самых популярных и востребованных в области портативной техники.

Для приборов с электродвигателями, которые потребляют большие токи, применение таких зарядных устройств, как аккумуляторы никель-кадмиевого типа, просто незаменимо.

Разрядные токи, на которых они используются, находятся в диапазоне 20-40 А. Предельная нагрузка для NiCd-аккумуляторов составляет 70 А.

Преимущества

Представленные устройства обладают рядом преимуществ. Они способны работать в широком диапазоне токов разряда и заряда, а также температуры.

Заряжать аккумуляторы никель-кадмиевого типа можно при низких температурах, что объясняется высокой нагрузочной способностью. Они не требовательны к типу затяжного устройства. Это существенное преимущество. Оно выделяет устройство из массы других разновидностей, так как зарядить никель-кадмиевый аккумулятор можно в любых условиях. Он устойчив к механическим нагрузкам, пожаробезопасен. Аккумуляторы никель-кадмиевой разновидности имеют более 1000 циклов зарядки и обладают способностью восстановления после понижения емкости.

Низкая стоимость вместе с перечисленными преимуществами делают NiCd-аккумуляторы очень популярными.

Недостатки

Устройство никель-кадмиевого аккумулятора имеет и ряд недостатков. Основным из них является "эффект памяти".

В течение нескольких циклов зарядки-разрядки происходит изменение структуры поверхности электродов. При этом в сепараторе образовываются химические соединения, которые впоследствии будут мешать разрядке малыми токами. Это приводит к запоминанию источником своего неполного разряда.

Заряд никель-кадмиевых аккумуляторов чем дальше, тем больше будет терять свою эффективность. Источник будет иметь всё меньшую емкость.

Недостатком также является высокий саморазряд в течение первых суток до 10 % после зарядки. Минусом можно считать также большие габариты.

Зарядка

Чтобы разобраться, как заряжать никель-кадмиевые аккумуляторы, следует учесть ряд особенностей этого процесса.

Быстрый режим зарядки для представленных источников питания предпочтительнее, чем медленный. Импульсное пополнение емкости для них лучше, чем постоянный ток.

Рекомендуется выполнять восстановление устройства. Этого требуют никель-кадмиевые аккумуляторы. Как заряжать их подобным методом, учли производители соответствующих устройств. Реверсивный заряд ускоряет процесс благодаря рекомбинации газов, выделяющихся во время его проведения.

Представленная техника осуществления восстановления подобных батарей позволяет увеличить срок эксплуатации до 15 %. Как зарядить никель-кадмиевый аккумулятор? Существует целая технология. Некоторые пользователи для увеличения отдачи применяют быструю зарядку с последующей дозаправкой слабыми токами. Это позволяет более плотно наполнить аккумулятор.

Хранение и утилизация

Хранить представленные батареи следует в разряженном состоянии. Существуют зарядные устройства, в которых предусмотрена функция разряда. Если же таковой не имеется, перед хранением никель-кадмиевые аккумуляторы опустошают при помощи лампы накаливания с допустимым током 3-20 А. Батарею подключают к ней и ждут, пока спираль не начнет краснеть.

Такая процедура позволит хранить устройство довольно длительное время. Причем условия окружающей среды, перепады температуры не будут иметь воздействия на устройство.

Если требуется утилизировать представленную разновидность батарей, следует отдать их на особый пункт приема подобных устройств. Во всех развитых странах они есть. Это связано с наличием в аккумуляторе кадмия. По своей токсичности он сопоставим с ртутью.

Понимая технологию того, как зарядить никель-кадмиевый аккумулятор, хранить его и утилизировать, можно не сомневаться в безопасности и долговечности этого источника питания. Он не навредит экологии и здоровью человека при ответственной утилизации батарей.

Восстановление

Аккумуляторы никель-кадмиевого типа являются единственной разновидностью подобных устройств, которые нуждаются в восстановлении.

Периодическое проведение цикла разряд-заряд позволит увеличить срок эксплуатации батарей. Этого не следует делать слишком часто, но время от времени это просто необходимо.

Для проведения восстановления существует два типа устройств. Первое называется реверсивно-импульсным зарядным устройством с разным временем продолжительности. Это очень эффективное устройство, но сложное и дорогостоящее. Восстановление никель-кадмиевых аккумуляторов можно выполнять более простым устройством. Оно совершает цикл разряда-заряда автоматически. Такое устройство дешевле, удобнее и позволяет заряжать сразу 2-4 батареи.

Для проведения процесса необходимо вставить аккумуляторы в кассету оборудования. При помощи переключателя задается число аккумуляторов. Включение прибора в сеть приведет в действие индикатор. Красный цвет соответствует зарядке, а желтый - разрядке. Зеленый свет индикатора оповещения о прекращении процесса. Разряжать батареи следует принудительно. Для этого на приборе необходимо переключить определенный рычаг. После окончания разрядки устройство продолжит процесс зарядки автоматически.

Ознакомившись с основными характеристиками такого источника питания, как никель-кадмиевые аккумуляторы, можно правильно их эксплуатировать. Придерживаясь инструкции производителя, регулярно выполняя восстановление батарей, можно значительно продлить их срок службы. Правильно утилизируя представленное устройство, достаточно просто будет обезопасить себя, других людей и экологию в целом от токсического воздействия кадмия.

Кадмиевый аккумулятор – востребованный источник энергии, который используют для комплектации бытовой техники. Они причислены к щелочным типам. Ими оснащают те агрегаты и устройства, в состав которых нельзя ввести другие модели.

В состав никель кадмиевых аккумуляторов введены минусовые и плюсовые токопроводящие выводы, для разделения которых использован сепаратор. Внутренняя часть заполнена щелочным электролитическим составом. Корпус для никель кадмиевых батарей подготовлен из специального металла, герметично запаян.

Дабы обеспечить лучший контакт, для подготовки электродов используют фольгу, которая отличается небольшой толщиной. Для конструирования сепаратора, который сосредотачивают между выводами в батареях никель кадмиевых, применяют тканое сырье. Ведь он не взаимодействует со щелочным электролитом.

Для подсоединения аккумуляторной батареи к другим никелево кадмиевым источникам питания применяют борн. В состав устройства никель кадмиевых аккумуляторов входят сварные соединения, при помощи которых обеспечивается плотное соединение.

Преимущества никель-кадмиевых источник питания

  • Численность циклов разряда и заряда достигает 1 000 и более.
  • Период хранения таких устройств продолжителен. При этом степень заряженности агрегата не влияет на данный показатель.
  • Технология зарядки никель кадмиевых аккумуляторов относительно проста. Ее смогут реализовать и новички-автомобилисты.
  • Эксплуатировать такие источники питания можно и в зимний период, в жестких условиях.
  • Емкость не снижается даже при минусовой температуре.

Отрицательные стороны

  • Устройства обладают таким свойством, как «эффект памяти». Для его устранения возникает потребность в проведении определенных мероприятий.
  • Уровень саморазряда повышенный.
  • Если сравнить cd аккумуляторы с иными источниками питания, то можно выделить их невысокую энергетическую плотность.
  • Для подготовки применены токсичные компоненты. Поэтому некоторые государства не используют такие аккумуляторные батареи, не занимаются их изготовлением.
  • Для утилизации таких агрегатов применяют соответствующее оборудование. В нашей стране для никель кадмиевых агрегатов подготавливают установки для утилизации, переработки.

Заряд, разряд никель-кадмиевых аккумуляторных батарей

Процесс разряда

Разрядные параметры источника питания во многом зависят от конструктивных особенностей, характеристик электродов и токовыводов. Они же предопределяют величину напряжения и внутреннего сопротивления.

Разрядные параметры зависят от:

  • Особенности и структуры сепаратора.
  • Качества сборки.
  • Количества электролитического состава, которым заполнен корпус.
  • Прочее.

При продолжительном разряде nicd источника специалисты рекомендуют пользоваться дисковыми батарейками, который дополнены крупногабаритными прессованными выводами. Поэтому при небольшом увеличении тока емкость разрядная, а также напряжение снижается. Дабы оптимизировать этот показатель, толщину выводов уменьшают, численность увеличивают.

Максимальное значение емкости наблюдается при комнатной температуре. Дальнейшее повышение температуры не влияет на этот параметр. Отрицательная температура провоцирует снижение разрядного напряжения, повышение разрядного тока.

Использование шуруповертов, которые укомплектованы никель-кадмиевыми источниками питания, в зимний период требует осторожности.

Зарядный процесс

В процессе зарядки ni cd аккумуляторов необходимо вводить ограничения по заряду. Ведь в процесс подзарядки внутри корпуса повышается давления, вырабатывается кислород, а коэффициент применения тока понижается.

Как заряжать ni cd батарею? Дабы полностью восстановить заряд, должна быть сообщена емкость в 150–160 процентов. Температурный диапазон – 0-+35 градусов. Если не учитывать температурный диапазон, то давление повысится. Через аварийный клапан будет выделяться кислородная смесь. Поэтому важно заранее определить, как правильно заряжать аккумуляторную батарею.

Разряженный никель-кадмиевый аккумулятор заряжают в различных режимах. От того, какой режим выбран, зависит время зарядки.

  1. Током в 0,2 от общей емкости в течение 7 часов.
  2. Током в 0,3 от общей емкости не более 4 часов.

Заряжая агрегат в ускоренном режиме (током в 0,4 от имеющейся емкости), перезаряд запрещен, так как это повлечет уменьшение емкости. Устанавливать, до скольки заряжен источник питания, можно с помощью соответствующих устройств. При работе с токами применяется амперметр. Дабы определить количество вольт, используют вольтметр или мультиметр.

Зарядник для никель-кадмиевых аккумуляторных батарей

Для заряда ni cd батареи используют реверсивные и автоматические зарядники.

Автоматическое зарядное устройство для ni cd отличается простотой использования. С его помощью можно подзарядить 2–4 батарейки для шуруповерта или другой бытовой техники. После размещения батарейки в ЗУ устанавливается режим, число. После этого агрегат подключают к сети.

Автоматические модели оснащены индикаторами, с помощью которых определяется состояние заряжаемых источников питания при работе с током. Такие устройства подходят и для того, чтобы разряжать ni cd батареи.

Импульсные зарядники отличаются более сложной конструкцией. Их можно использовать при работе со значительным током. Поскольку их относят к профессиональным агрегатам, перед использованием изучается, как зарядить источник питания, как выставить требуемые параметры.

Реверсные (импульсные) модели подходят для циклической подачи ток заряда и разряда. При разряде и заряде заранее определяются параметры тока, напряжения.

Особенности использования

Продолжительная эксплуатация влияет на функционирование и работоспособность кадмий никелевых акб. К ухудшению работоспособности и выходу из строя приводят:

  • Рабочая поверхность токопроводящих выводов уменьшается.
  • Активная масса токопроводящих выводов существенно уменьшается.
  • Щелочной электролитический состав меняет состав, неправильно перераспределяется по источнику питания.
  • Образуется утечка по проводящим элементам. В итоге, разрядка заряженного источника питания наступает достаточно быстро.
  • Расход жидкости, кислорода возрастает. При чрезмерном выделении кислорода процесс становится необратимым.
  • Органические составы начинают распадаться.

Восстановление никель-кадмиевых аккумуляторов

Процедура восстановления никель кадмиевых аккумуляторов, которые используются для комплектации шуруповёрта, иного портативного агрегата, занимает определенное время. Поскольку стоимость таких акб высокая, перед реализацией следует изучить особенности.

По сути, восстанавливаем никель-кадмиевый аккумулятор шуруповерта импульсным током, который подается в течение 2–4 секунд. Величина тока превышает параметры емкости в 10 и более раз.

Перед тем как восстановить АКБ, подготавливаются определенные элементы и инструменты:

  1. Работоспособный источник питания с сильными показателями тока. В качестве АКБ используют автоаккумулятор.
  2. Зажимы.
  3. Провода.
  4. Мультиметр, с помощью которого контролируется напряжение.
  5. Защитные предметы.

Процедура восстановления включает определенные мероприятия:

  • У блока портативного инструмента или отдельной батареи определяется положительный и отрицательный контакт.
  • Пользуясь зажимами или крокодилами, а также отрезками проводов присоединяются минусы.
  • Другой конец провода прижимают к положительному контакту. Длительность контакта провода составляет 1–2 секунды (возможно увеличение до 3 секунд). Подобные действия занимают немного времени. При контакте следят за тем, чтобы провода не прикипели к блоку, батарее.

По истечении одного цикла при помощи мультиметра замеряется уровень напряжения. Как только напряжение восстановилось, переходят к набору емкости. Дабы восстановить и выполнить ремонт источника питания, выполняется 2–4 цикла.

Такая методика приносит ожидаемый эффект лишь на короткий срок. Все потому, что электролитический состав меняется, изменяется и его объем. В результате, аккумуляторы как источники долго использовать нельзя.

Модернизированная методика

Дабы своими руками восстановить никель кадмиевые аккумуляторы, а также обеспечить их продолжительную эксплуатацию, выполняются следующие действия:

  • Все батарейки тщательно проверяются, измеряется напряжение. Те элементы, на которых напряжение близко к нулю, изымаются.
  • В корпусе при помощи соответствующего инструмента подготавливаются отверстия, дабы залить 1 см3 дистиллированной воды.
  • Источники питания отстаиваются в течение короткого временного промежутка, после чего проводят повторную проверку напряжения.
  • Если работоспособность АКБ восстановлена, то сформированные отверстия обрабатывают герметиком, пайкой.
  • Блок комплектуется батарейками, повторно заряжается. Портативный инструмент готов к эксплуатации, как только на заряднике индикатор изменит оттенок. Для этих целей стоит пользоваться импульсными зарядными устройствами, которые отличаются обширным функционалом, качественной комплектацией.
  • При нулевом напряжении в АКБ вводят дистиллированную воду вновь.
  • Процедуру повторяют до тех пор, пока не достигнут положительного результата.

Особенности хранения

На кадмиевые аккумуляторы правила эксплуатации подготовлены специалистами. В инструкции прописано, как хранить источники питания. Выделено несколько основных правил.

Хранить ni cd источники можно только при полной разрядке. Для этих целей используют зарядные устройства, которые оснащены соответствующей функцией. Для опустошения применяют и лампы накаливания с соответствующим количеством ампер.

Хранить аккумуляторные батареи, которые правильно подготовлены, можно долго. Температурные изменения не влияют на состояние и работоспособность.

Для хранения никель кадмиевых аккумуляторов используют помещения. Ведь температурные колебания не провоцируют разрядку, запуск необратимых процессов.

Хотя хранятся никель-кадмиевые аккумуляторы долго, на определенном этапе возникает потребность в утилизации. Для этого следует обратиться в организацию, которая выполняет подобные процессы.

Эффективность никель кадмиевых аккумуляторов сложно переоценить. Ими комплектуют портативные инструменты, используемые в быту и в промышленности. При правильном обращении, соблюдении техники безопасности и условий эксплуатации период применения превышает пять лет.

Видео про Никель кадмиевые аккумуляторы



В связи с быстрым развитием портативных устройств современной бытовой техники, в настоящее время большое распространение получили Ni-Cd и Ni-NiMh аккумуляторные батареи, срок службы которых сильно зависит от правильной эксплуатации. В связи с этим возникает необходимость в устройстве, которое имеет возможность измерять основные технические характеристики эксплуатируемых аккумуляторов, такие как емкость и внутреннее сопротивление, а так же обеспечивать аккумуляторам оптимальный режим заряда.

Автором статьи был приобретен фотоаппарат Canon А710IS, использующий в качестве источника питания две батарейки формата АА. Практически сразу выяснилось, что фотоаппарат может нормально функционировать только с дорогими алкалиновыми батарейками стоимостью от 5грн.(0,7$) С более дешевыми батарейками он или отказывался включаться, или делал всего несколько снимков, после чего выключался. В связи с этим, практически сразу, были приобретены два аккумулятора GP емкостью 2700мА/ч. С этими аккумуляторами GP фотоаппарат мог нормально функционировать на протяжении около месяца, при этом можно было сделать снимков и видео приблизительно на 2Гб.

Через год эксплуатации количество снимков, которое мог сделать фотоаппарат после полной зарядки аккумуляторов, начало катастрофически уменьшатся. Кроме этого было замечено, что увеличился саморазряд аккумуляторов.

Через полтора года эксплуатации фотоаппаратом стало практически невозможно пользоваться – после полного заряда аккумуляторов, можно было сделать не более 20-30 снимков (или 6-7 мин. видео), при этом, если фотоаппаратом не пользовались больше недели, он, как правило, даже не включался. И это при том, что реальных циклов заряда было не более 30, при указываемом ресурсе производителя до 1000…

Так как аккумуляторы заряжались зарядным устройством китайского происхождения, и циклы заряда-разряда для предотвращения сульфатации не производились, был сделан вывод о том, что возможной виной преждевременного выхода из строя аккумуляторов был неправильный зарядный режим и отсутствие разрядно-зарядных тренировочных циклов.

При попытках восстановления аккумуляторов методом разрядно-зарядных циклов выяснилось, что емкость аккумуляторов составляет немногим более 1000мА/ч и восстановлению они не поддаются (проверка емкости проводилась при помощи разряда полностью заряженных аккумуляторов на лампочку накаливания, при этом по времени свечения лампочки и току потребления ориентировочно определялась емкость). При этом проверка емкости 5-и летних аккумуляторов Energizer 2300мА/ч показала емкость около 1400мА/ч, однако в фотоаппарате они показывали результаты приблизительно аналогичные аккумуляторам GP, с одним лишь положительным отличием - саморазряд был меньшим – фотоаппарат включался и через две недели, однако мог сделать не более 10 снимков.

После всех экспериментов было решено приобрести новые аккумуляторы, и собрать зарядное устройство, которое отвечало бы следующим требованиям:
- было схемотехнически очень простым и не содержало дорогостоящих компонентов;
- имело возможность ускоренной зарядки аккумуляторов и проведения тренировочных разрядно-зарядных циклов;
- при проведении зарядки и разрядки подсчитывалась потребленная/отданная емкость в мА/ч. с непосредственным измерением тока и в конце заряда определялось внутреннее сопротивление аккумулятора;
- окончание зарядки определялось по методу ∆U и имелся контроль температуры аккумулятора;
- имелась возможность контроля зарядного процесса на компьютере для его визуализации, а так же оценки принятия решения об окончании заряда;

Довольно долго проводился поиск в интернете и различных журналах подходящей схемы, однако они были или слишком неинформативными , или слишком сложными , или не обеспечивали требуемых технических характеристик.

В конце концов, за основу зарядного устройства (в дальнейшем ЗУ) была взята схема с , приспособленная под зарядку двух однотипных Ni-Cd или Ni-Mg аккумуляторов. Кроме этого был добавлен трехзначный светодиодный индикатор и написано новое программное обеспечение. Схема зарядного устройства приведена на рис.1.

Рис. 1

Особенность схемы – постоянное измерение тока в процессе заряда-разряда, что снизило требование к его стабильности и позволило делать более точный подсчет емкости.

Для питания устройства требуются два источника питания. Первый из них, подключенный к Х2-Х4 должен иметь характеристику близкую к источнику тока, с напряжением холостого хода около 4..6В, и током, соответствующему желаемому току заряда.

Второй, подключенный к Х3-Х4, должен быть источником напряжения, с напряжением 6…11В и током не менее 50мА для питания непосредственно схемы управления и индикации. Если напряжение этого источника будет не менее 8В, тогда вместо дорогого стабилизатора с малым падением напряжения LM2940-5 (DA2) можно использовать распространенный стабилизатор L7805 (КРЕН5А).

На практике было взято зарядное устройство от неизвестного телефона, на котором было написано DC 5.0V/740mA. В действительности на холостом ходу оно выдавало 7В, а ток заряда, при подключении его к двум последовательно включенным аккумуляторам, составил 580мА. Это зарядное устройство (на схеме показано как ZU) было переделано следующим образом. Конденсатор 4,7uF 400V заменен на 10uF 400V, для безопасности добавлен предохранитель 0,25А вместо используемого для этих целей резистора, на высоковольтный транзистор 13003 в корпусе ТО-126 (как у отечественного КТ815) прикреплен небольшой радиатор, и, самое главное, на трансформаторе была домотана дополнительная обмотка из 15 витков провода диаметром 0,18мм (на схеме W2) последовательно с существующей, после чего был допаян навесным монтажом диод VD10 типа 1N5819 и конденсатор С2 220 uF 25V. Необходимо, чтобы при намотке дополнительной обмотки W2 направление намотки было таким же, как в уже существующей W1 - напряжение на обмотках должно суммироваться. Диод VD10 и конденсатор С2 были приклеены термоклеем прямо к трансформатору.

Вся переделка заняла около полутора часов. В результате даже в начале заряда полностью разряженных новых аккумуляторов напряжение на контакте Х3 не опускалось ниже 7В, при этом ток заряда составлял 640мА. В конце заряда ток снижался до 560мА. Это позволило заряжать полностью разряженные аккумуляторы 2700мА/ч за 5часов. При необходимости увеличить ток заряда, следует применить более мощный обратноходовый импульсный блок питания, переделанный аналогичным образом, или в качестве источника тока (Х2-Х4) применить отдельный блок питания (более предпочтительно).

Схема управления построена на распространенном микроконтроллере фирмы Atmel – Atmega 8A. Контроллер настроен на внутренний генератор с частотой 1МГц. Выводы PC0 и PC1 контроллера настроены как входа АЦП. Резисторы R8,R6 и R7,R5 образуют делители для согласования напряжения на аккумуляторах с внутренним опорным источником напряжения АЦП контроллера– 2,56В. Благодаря делителям, максимальное измеряемое напряжение составило 2,56/3*(3+1,5)=3,84В. Стабилитроны VD5,VD6 служат для ограничения напряжения на входах на уровне 4,5В, конденсаторы С11,С12 – для фильтрации измеряемого напряжения.

Благодаря измерению напряжения до и после резистора R13, появилась возможность измерять ток заряда, и снизилось требование к стабильности тока заряда. При подсчете емкости устройство каждую секунду измеряет ток заряда в мА и суммирует его. На дисплее отражается значение суммы, разделенное на 3600, т.е. потребленная (отданная) емкость в мА/ч. Резистор R13 состоит из трех резисторов 1Ом 0.25Вт соединенных параллельно.

В устройстве HL2 применен трехзначный светодиодный индикатор с общим катодом KOOHI E30361LC8W. При проверке оказалось, что даже при токе 2 мА на сегмент, яркость свечения была достаточно интенсивной. Это позволило обойтись без дополнительных транзисторов, подключив катоды непосредственно к портам контроллера, так как суммарный ток не превышал разрешенные даташитом 40мА на порт. Как оказалось позже, без диодов VD7,8,9 индикатор тоже нормально работает. Возможно применение любого аналогичного индикатора. При недостаточной интенсивности свечения возможно уменьшение гасящих резисторов до 560Ом.

L1,C3,C4 служат для дополнительной фильтрации питания контроллера. Разъем Х1 предназначен для подключения зарядного устройства к компьютеру. Детали R1,R2,R25,R26,VD1,VD2 служат для защиты контроллера от неправильного подключения к внешнему устройству (компьютеру). Если такое подключение не планируется, их использование не обязательно.

Кнопка SA1 служит для выбора режима работы ЗУ при его включении. Светодиод VD4 служит для дополнительной индикации о текущем режиме работы ЗУ. Его наличие позволяет пользоваться ЗУ без индикатора HL2 (если нет необходимости в дополнительной информации о процессе заряда). Порт РВ6 используется программно и как вход, для опроса кнопки (когда светодиод погашен), и как выход – для индикации режима работы.

Датчик DS18B20 служит для измерения температуры аккумуляторов. Его необходимо располагать как можно ближе к аккумуляторам. В авторском варианте датчик был закреплен между аккумуляторами непосредственно в держателе, полусферой к аккумуляторам. При его отсутствии устройство тоже работает, но соответственно, температура не отображается.

Элементы VT1,VT2,VT3,R11,R12,R9,R10 образуют ключ зарядного тока. В качестве транзистора VT1 возможно применение любого маломощного n-p-n транзистора (например, КТ315Б), при этом необходимо увеличить резистор R9 до 4,7кОм. VT2 может быть любым аналогичным с коэффициентом передачи тока не менее 50.

VT4,R14,R15,R16 образуют разрядный ключ. При включении транзистора VT4 ток разряда аккумулятора протекает через резисторы R13,R16 и ограничивается ими на уровне около 410мА. Так как ток разряда протекает через резистор R13, имеется возможность измерять разрядный ток и подсчитывать отданную аккумулятором емкость, отпадает необходимость в разрядных источниках тока. В качестве транзистора VT4 возможно применение составного n-p-n транзистора, например КТ972, КТ827, при этом необходимо увеличить сопротивление R14 до 1,5кОм.

Разъем ХS1 предназначен для внутрисхемного программирования контроллера.

При частичном использовании SMD элементов размер платы составил 69х50мм. Светодиодный индикатор был закреплен непосредственно в корпусе ЗУ термоклеем, и соединялся с платой с помощью проводов МГТФ. Корпус для всего устройства был взят от блока питания приставки SEGA размером 80х55х50мм. В корпусе был выпилен паз под держатель аккумуляторов, который был вклеен термоклеем с внутренней стороны. Внешний вид платы показан на фото 1, компоновка компонентов внутри корпуса на фото 2, внешний вид всего ЗУ на фото3.


Фото 1


Фото 2


Фото 3

Для подключения схемы к компьютеру необходим адаптер (дата-кабель) собранный на MAX232 или ее аналоге. У автора схема была собрана согласно рис.2. Вывод Тх адаптера необходимо соединить с выводом Rx устройства, а Rx адаптера соответственно с Тх устройства.


Рис. 2

При разработке программы для устройства был использован алгоритм, описанный в .

Алгоритм работы зарядного устройства состоит из нескольких фаз:
1. Определение наличия аккумулятора.
2. Выбор режима работы.
3. Разряд (если был выбран)
4. Пред-зарядка (pre-charge).
5. Быстрая зарядка (fast charge).
6. Дозарядка (top-off charge).
7. Поддерживающая зарядка (maintenance charge).

В фазе определения наличия аккумулятора включается ключ подачи зарядного тока VT2, при этом измеряется напряжение на зажимах держателя. Если напряжение выше 3,3В, значит аккумуляторы отсутствуют. На индикаторе при этом высвечиваются прочерки "---". Снижение напряжения ниже 3,3В, расценивается как появление аккумуляторов, при этом индикатор HL2 гаснет, а светодиод VD4 начинает мигать с частотой пять раз в секунду.

Если в течение 25сек. кнопка SA1 не будет нажата, устройство «вспоминает» последний свой режим, хранящийся в ЕЕПРОМ, и начинает его отрабатывать. Т.е. если был сбой в питании, устройство продолжит заряжать аккумуляторы, если последний режим был зарядка, или перейдет в капельный режим подзарядки, если зарядка была окончена. Единственное «но» - информация о емкости заряда (разряда) будет утеряна, ЗУ начнет подсчет сначала. Это предотвращает повторный заряд полностью заряженных аккумуляторов при пропадании напряжения в сети.

Если же кнопка SA1 в течение первых 25сек. будет все же нажата, на индикаторе HL2 сначала высвечивается напряжение аккумуляторов (общее напряжение делится на два, т.е. высвечивается усредненное напряжение на один аккумулятор), затем начнет мигать «ЗР1» - режим заряда без разрядного импульса. Если повторно нажать кнопку высветится режим «ЗР2» - режим заряда с разрядным импульсом. При следующем нажатии высветится «РАЗ» - режим разряда с последующим зарядом в режиме «ЗР2». Дальше - по кругу, при этом светодиод VD4 мигает в соответствии с выбранным режимом (см. далее). На выбор режима дается 10сек. с момента последнего нажатия кнопки.

Если был выбран режим разряда, аккумуляторы сначала разряжаются, до напряжения менее 0,8В на один аккумулятор. При этом на индикаторе в цикле выводится следующая информация: «РАЗ» (режим), « U », «напряжение на один аккумулятор» (в вольтах), « А », «ток разряда» (в амперах), «АcH», «емкость разряда» (в ампер-часах). Светодиод VD4 при этом мигает с частотой два раза в секунду. Если разряд длится более девяти часов, высвечивается «ErH» - ошибка по времени. После разряда, ЗУ всегда переходит в режим быстрого заряда «ЗР2».

Режиму быстрого заряда (и ЗР1 и ЗР2) всегда предшествует фаза предзарядки. При этом ток заряда подается на 300мс., далее следует пауза 700мс. Т.е. средний ток составляет 30% от измеренного в момент подачи тока. При этом на индикаторе выводится следующая информация: «НЗР» (режим начального заряда), « U », «напряжение на один аккумулятор», « А », «ток в амперах» (средний ток), « t », «температура» (в град. Цельсия). Последние два значения не выводятся, если датчик не подключен, или измеренная температура менее 1°С. Светодиод VD4 при этом мигает с частотой раз в две секунды с короткими вспышками. Фаза предзарядки длится не менее 1мин. Основное условие перехода к основному режиму заряда – повышение напряжения на аккумуляторах более 1В на один аккумулятор. Если в течение 30 мин. не удается «раскачать» аккумуляторы, высвечивается ошибка «ErU» - ошибка по напряжению.

Режимы быстрой зарядки ЗР1 и ЗР2 происходят следующим образом. Включается зарядный ток. Раз в секунду зарядный ток выключается и делается небольшая пауза 5мс. для стабилизации. Далее на протяжении 16мс. делается подряд шесть замеров напряжения на аккумуляторах, после чего напряжение усредняется. Если выбран режим ЗР1, то после замеров снова включается зарядный ток. Если выбран режим ЗР2, тогда после замеров включается транзистор VT4, и через аккумуляторы протекает разрядный ток на протяжении 5мс., после чего VT4 отключается, и снова включаются VT1,VT2,VT3 – снова начинает протекать зарядный ток.

Как преимущество метода ЗР1 называют лучшее выравнивание концентрации активных веществ по всему объему, меньшую вероятность образования крупных кристаллических образований на электродах и их пассивации. Дополнительным преимуществом этого метода является то, что измерение напряжения происходит без протекания зарядного тока, практически исключается влияние сопротивления контактов и внутреннего сопротивления аккумуляторов на точность измерения. Режим с разрядным импульсом (ЗР2) называют FLEX negative pulse charging или Reflex Charging. Преимуществом такого метода называют более низкую температуру аккумулятора в процессе зарядки и способность устранять крупные кристаллические образования на электродах (вызывающих эффект «памяти»).

В процессе заряда на индикатор HL2 выводится в цикле следующая информация: «ЗР1» (или «ЗР2», если режим ЗР2), « U », «напряжение на один аккумулятор», « А », «ток в амперах», «АcH», «емкость заряда», « t », «температура», « dt », «приращение температуры». Последние четыре значения не индицируются, если температурный датчик DS18B20 отсутствует. В режиме ЗР1 светодиод VD4 моргает раз в секунду с равными интервалами паузы и засветки. В режиме ЗР2 – тоже раз в секунду но с длинной паузой и короткой засветкой.

Через 15 мин. после начала процесса быстрого заряда ЗУ запоминает начальную температуру аккумуляторов. В дальнейшем, устройство показывает параметр dt – увеличение температуры с начала заряда. Начальная температура запоминается через 15 мин. для того, чтобы уменьшить влияние нагрева от блока питания, после включения его на полный ток заряда. Увеличение параметра dt до 15°С является одним из условий окончания заряда. Дело в том, что в конце заряда энергия, передаваемая ЗУ перестает поглощаться аккумуляторами, и практически полностью переходит в тепловую. Это вызывает нарушение теплового баланса, и температура начинает расти до некоторого нового значения, при которой энергия принятая аккумуляторами от ЗУ не станет равной отданной аккумуляторами в окружающую среду. Энергия, отданная аккумуляторами в окружающую среду, в первом приближении зависит от геометрии аккумуляторов (которая не менялась с начала заряда), и разности температур аккумуляторов и окружающей среды. Таким образом, для каждого тока заряда, будет свое, достаточно постоянное значение приращения температуры в конце заряда. Именно приращение, а не какое-либо конкретное значение температуры. Экспериментально было определено, что для тока заряда 600мА и формата аккумуляторов АА приращение температуры в конце заряда составляет 11…13°С. Так как этот метод использовался автором как дополнительный, значение приращения было выбрано с запасом - 15°С. На практике окончание заряда по dt происходит достаточно редко, как правило, у старых аккумуляторов большой емкости.

Основным критерием определения окончания зарядки является снижение или постоянство напряжения на 10-и минутном интервале, т.е. dV£0. В памяти ЗУ организован массив из десяти ячеек. ЗУ проводит каждую секунду замер напряжения и суммирует его с предыдущими значениями. Раз в 60 сек. проводится усреднение, т.е. полученная сумма делится на 60, затем массив сдвигается, и в освободившуюся ячейку записывается полученное значение, при этом счетчик суммы обнуляется. Таким образом, всегда доступны значения напряжений в течение последних десяти минут, с минутным интервалом. После этого проводится проверка на dV£0, т.е. все предыдущие значения напряжений должны быть больше или равны последнему U i ³U 10 . Однако после испытаний устройства пришлось несколько дополнить условие. Дело в том, что АЦП дискретное, и в данном устройстве имеет 1024 ступеньки, относительно опорного напряжения, 2,56В. С учетом резистивных делителей шаг ступеньки составляет около 3,7мВ. Таким образом, если даже напряжение на аккумуляторе не растет, но находится на середине ступеньки, АЦП выдает «плавающее» напряжение на величину ступеньки. За счет многократных усреднений (за минуту усредняется 360 измерений) реальное колебание напряжения в массиве при постоянном напряжении аккумуляторов составляло 2мВ. Это затягивало момент определения окончания зарядки, что часто приводило к окончанию зарядки по условию превышения температуры dt. В связи с этим, условие было несколько смягчено – из девяти проверок условий, 5 должны были точно соблюдать условие U i ³U 10 , а четыре могли отклоняться от него не более чем на 2мВ, т.е. если U i 10, то (U 10 - U i) £2мВ. После этого изменения многократный анализ зарядных кривых показал стабильность срабатывания ЗУ.

В процессе быстрой зарядки ЗР1 и ЗР2 возможны следующие аварии: при времени зарядки более 9ч. – ошибка по времени «ErH», при отдаче в аккумулятор более 3800мА/ч – ошибка по емкости – ErA, если после детектирования окончания заряда напряжение на двух аккумуляторах менее 2,5В – ошибка по напряжению «ErU». В режиме ошибки светодиод VD4 мигает пять раз в секунду.

После детектирования окончания зарядки (dV или dt), или если в процессе зарядки аккумуляторы нагрелись до критической температуры 50°С, ЗУ переходит в режим дозарядки. Этот режим длится 20мин. и служит для выравнивания заряда аккумуляторов в батарее. Если температура аккумуляторов более 40°С, ток дозарядки составляет 5%, если менее 40°С – 20% от тока зарядного источника. Величина тока дозарядки регулируется импульсным методом, так же как и в режиме предзарядки.

В процессе дозаряда на индикатор HL2 выводится в цикле информация аналогичная режиму основного заряда, только режим индицируется как «dЗР», и не выводится информация превышения температуры « dt ». Светодиод VD4 при этом мигает с частотой раз в две секунды с длинными засветками.

После окончания режима дозаряда, ЗУ переходит в режим поддерживающего капельного заряда 0,5% током. При этом один раз, непосредственно после окончания дозаряда, производится ориентировочный расчет внутреннего сопротивления аккумуляторов, на основании замера напряжения аккумуляторов без нагрузки, а так же под нагрузкой разрядным сопротивлением, по формуле R вн =(Е эдс *5,97)/U наг –5,97, где 5,97 – сопротивление нагрузки (0,33+5,1+0,54(сопротивление транзистора)). На индикатор выводится следующая информация: « ОК»; « dU» - если было срабатывание по методу dV£0, или « dt» - если было срабатывание по условию превышения температуры dt; « U »; «напряжение на один аккумулятор в конце заряда»; «Е-З»; «емкость заряда»; «Е-Р» (если был режим разряда); «емкость разряда» (если был режим разряда) ; «rВН»; «внутреннее сопротивление в конце заряда» (в Омах). Светодиод VD4 при этом постоянно светится. Процесс заряда окончен.

Для визуализации процесса было создано приложение в бесплатной графической среде программирования Hi-Asm (http://hiasm.com). На сайте автора среды Hi-Asm и в интернете находится достаточное количество примеров, автору этой статьи понадобилось всего четыре вечера для создания приложения ЗУ без каких либо навыков программирования на языках подобного уровня. Для запуска всего комплекса необходимо сначала подсоединить кабель адаптера к ЗУ и COM1 порту компьютера, запустить приложение СHARGER.exe, после чего установить аккумуляторы в ЗУ и подать питание. После индикации на дисплее напряжения, выбрать необходимый режим зарядки: ЗР1, ЗР2 или РАЗ с помощью кнопки SA1. После начала соответствующего режима необходимо нажать кнопку «ЦИКЛ» в приложении CHARGER, в результате начнут строиться графики изменения температуры и напряжения аккумуляторов в процессе заряда. После нажатия кнопки «ЦИКЛ» приложение раз в минуту отправляет запрос на ЗУ в виде кода 0x0F. В ответ ЗУ отсылает пакет из восьми байт: четыре байта напряжения аккумуляторов в мВ (без запятой), затем три байта температуры (первые два целые, затем десятые без запятой), в конце код CR (13). Все данные отправляются в коде ACS||. Когда процесс заряда окончен, ЗУ передает во всех данных нули, в результате появится окно с надписью «Заряд окончен».

Для примера приведены графики заряда аккумуляторов GP 2700мА/ч (возраст 1,5лет) - Рис. 3, DURACEL 2650мА/ч (новые) - Рис. 4., неизвестного происхождения с надписью 700мА/ч от радиоуправляемой машинки (возраст полгода) - Рис. 5.

На рис.3 приведены графики заряда аккумуляторов от фотоаппарата, описанных в начале статьи. Как видим аккумуляторы смогли отдать сразу после зарядки всего 1210мА/ч, КПД зарядного процесса составило всего около 67%, у аккумуляторов достаточно высокое внутреннее сопротивление – 0,52Ом (на два последовательно включенных аккумулятора). Снижения напряжения в конце быстрого заряда не было. Так как КПД процесса был низким, температура росла достаточно интенсивно на протяжении всего времени, хотя увеличение температуры в конце заряда все равно достаточно очевидно.


Рис. 3. GP 2700мА/ч (возраст 1,5лет) R вн =0,52 Ом, Е зар =1,79А/ч, Е раз =1,21А/ч

На рис. 4 приведены графики заряда аккумуляторов DURACEL приобретенных взамен GP. Здесь графики как из учебника – явный пик напряжения со спадом в 5мВ. Температура в процессе заряда практически не увеличивается, и имеет очень выраженный резкий рост в конце заряда, со скоростью роста 0,3°С/мин. КПД процесса около 90%, а сопротивление аккумуляторов 0,21Ом. Фотоаппарат на одном заряде этих аккумуляторов смог отснять 7Гб фото и видео на протяжении двух месяцев интенсивной эксплуатации!


Рис. 4 DURACEL 2650мА/ч (новые) R вн =0,21Ом, Е зар =2,95А/ч, Е раз =2,66А/ч

Ну и последние графики на рис. 5 показывают процесс заряда аккумуляторов неизвестного китайского производителя. Радиоуправляемая машинка, которая комплектовалась этими аккумуляторами, через полгода практически перестала функционировать – заряда аккумуляторов хватало на 1-2мин. Как видим, их реальная емкость всего 110мА/ч, вместо обещанных 700мА/ч. По графику напряжения видно, что аккумуляторами их уже назвать трудно...


Рис. 5 Неизвестные 700мА/ч (возраст вн =0,27Ом, Е зар =0,23А/ч, Ераз=0,11А/ч

Зарядное устройство практически не требует наладки. Возможно, будет необходимо подстроить делители напряжений, так как возможна довольно большая погрешность в связи с разбросом номиналов. Для этого необходимо в ЗУ установить заранее заряженные аккумуляторы, и включить его в режим разряда. В этом режиме подбором R6 или R8 откалибровать индицируемое напряжение аккумуляторов, отображаемое на индикаторе HL2 по эталонному вольтметру, подключенному непосредственно к аккумуляторам. После этого включить последовательно с аккумуляторами эталонный амперметр, и подбором R5 или R7 (тоже в режиме разряда) откалибровать индицируемый ток. Второй способ – откалибровать поправочным коэффициентом внутри программы, как и где менять – есть в примечаниях исходника.

Прошивка микроконтроллера производилась с помощью обычного LPT программатора, состоящего из 4-х резисторов (в интернете находится без особого труда). Запрограммированные фьюзы: CKSEL3=CKSEL2=CKSEL1=SUT0=0 – галочки. Вместо Atmega 8A можно применить Atmega 8.

При планировании компоновки элементов ЗУ внутри корпуса, необходимо максимально уменьшить влияние нагрева аккумуляторов от компонентов блока питания и платы!

При эксплуатации ЗУ вместе с аккумуляторами DURACEL выяснился интересный факт: если аккумуляторами практически не пользоваться более полутора месяцев, их емкость после разряда-заряда оказывается всего 1700…1800мАч, однако после одного-двух циклов разряда-заряда емкость восстанавливается до 2600мАч. А вот старым аккумуляторам GP и Energizer уже ничего не помогало – со временем их емкость неукоснительно снижалась. Вывод напрашивается сам – если не пользуетесь аккумуляторами, то хотя бы раз в месяц делайте им тренировочные циклы.

Hex-коды прошивки контроллера, исходный проект на Си (для ), схема и разводка платы (), приложение СHARGER.exe, его исходник на Hi-Asm (v.4.03) прилагаются к статье.

Литература

  1. Дмитрий Мосин. Умная зарядка NiMh AA аккумуляторов // www.radiokot.ru/circuit/power/charger/10/
  2. Абрамов С.М. Зарядное устройство для пальчиковых батареек //Радиоаматор. – 2010. - №9. – С.36.
  3. Ридико Л.И. Немного о зарядке NiMH и NiCd аккумуляторов // http://caxapa.ru/lib/charge_nimh.pdf

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рисунок 1.
DA1 МК AVR 8-бит

ATmega8

1 В блокнот
DA2 Линейный регулятор

LM2940-N

1 В блокнот
Датчик температуры

DS18B20

1 В блокнот
VT1, VT4 MOSFET-транзистор

IRLL110

2 В блокнот
VT2 Биполярный транзистор

КТ814А

1 В блокнот
VT3 Биполярный транзистор

КТ3107А

1 В блокнот
VD1, VD2, VD5, VD6 Стабилитрон 4.5 В 4 В блокнот
VD3, VD10 Диод Шоттки

1N5819

2 В блокнот
VD4 Светодиод Любой красный 1 В блокнот
VD7-VD9 Диод

КД522А

3 В блокнот
С1, С6 1000 мкФ 16 В 2 В блокнот
С2, С7 Электролитический конденсатор 220 мкФ 25 В 2 С7 можно на 16 В В блокнот
С3 Электролитический конденсатор 100 мкФ 1 В блокнот
С4, С5, С8-С12 Конденсатор 0.1 мкФ 7 В блокнот
R1, R2, R9, R14, R25, R26 Резистор

100 Ом

6 В блокнот
R3, R10, R15 Резистор

10 кОм

3 В блокнот
R4 Резистор

560 Ом

1 В блокнот
R5, R6 Резистор

3 кОм

2 В блокнот
R7, R8 Резистор


Вам также будет интересно:

Мой друг художник и поэт — Константин Никольский
Мой друг художник и поэт в дождливый вечер на стекле,Мою любовь нарисовал, открыв мне чудо...
Теодор Курентзис: пермская аномалия
Мир знает множество талантливых дирижеров, способных лишь по взмаху палочки заставить...
Как сделать трубочки из слоеного
Слоёные трубочки с кремом – лакомство родом из детства. Кулинары же ценят трубочки из...
Лунный календарь на декабрь года неблагоприятные
Энергетика Луны всегда имела большое влияние на деятельность людей. Рекомендации астрологов...
Как пожарить окуня на сковороде: рецепты приготовления
Целиком тушку окуня жарить 15 минут: по 7-8 минут с каждой стороны. Мелкого окуня жарить 10...